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KASUMI There are several aspects and criteria that sHuildonsidered for designing
E-function Feistel block cipher, including: block size, keyesinumber of rounds, subkey
Strict Avalanche Criterion (SAC) generation algorithm, round function, fast softwaneryption/decryption, and

ease of analysis. The function F is the heart @ft€leblock ciphers. It provides
confusion property that makes the relationship betw ciphertext and
encryption key as statistically complex as possilae obvious property is
that F must be nonlinear. The more non linear & ntlere difficult any type of
cryptanalysis be. KASUMI is the Feistel block ciphbat used in UMTS,
GSM, and GPRS mobile communication systems. F-fanctiomponent of
KASUMI composed of FI, FL, and FO functions.

In this paper, we analyzed the diffusion of F-fumect of KASUMI to
determine its cryptographic strength using Strisalanche Criterion (SAC)
and Bit Independence Criterion (BIC). The SAC test teshbwed that FI-
subfunction has smallest relative error. Whilsg BIC test results show that
FL-subfunction has a zero value.

Bit Independence Criterion (BIC)
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1. INTRODUCTION

KASUMI is a variation of the MISTY1 block cipher gdrithm developed by the Security
Algorithms Group of Experts (SAGE) as the basighed A5/3 algorithm, which is used for GSM-based
communication encryption algorithm. KASUMI operates64-bit input, using 128-bit key and produces 64
bit output. This algorithm will produce the outmfter eight times iteration. Operations that aredusclude:
XOR, AND, OR, and bits rotation [1].

KASUMI algorithm has F-function with nonlinear pregy that makes it more strength. F-function
of KASUMI decomposes into a number of subfunctiarenely FI, FO, and FL. Fl is a left sub functidn o
the FO. FI has a 16-bit input that divided intatparts: 9-bit to the left and 7-bit to the righ© has a 32-
bit input that divided to the left and the rightlsiwith the same size. FL subfunction has a 3#ipitt that
divided to the left and the right with the sameedit].

KASUMI become the standard algorithm for third getien of GSM communication [2]. Several
attacks have succesfully conducted on KASUMI suisBaomerang and Sandwich attack performed by [3],
but there is no detail description about the pahtweaknesses. Since there is no detail descripiion
KASUMI F-function testing from any literatures, wenducted research on the influence of diffusiorelle
of F-function of KASUMI.

2. THEORETICAL BACKROUND
2.1. KASUMI Algorithm

KASUMI operates on 64-bit input, using a 128-biykend a 64-bit output [1]. The input is divided
into two 32-bit halves, left (§) and right (R). This operation will generate output after eitihtes iteration.
The structure of KASUMI algorithm and its F-funati®can be seen in [1].

2.2. F-functions of KASUMI
a. Fl subfunction

Function Fl is a sub function on the left side @ HA]. The 16-bit input of Fl is divided into two
halves (lg and R), which Ly is 9 bits wide and {is 7 bits wide. FI used two S-boxes, i.e tl&t maps 7-bit
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input to 7-bit output, andesShat maps 9-bit input. This function uses two #ddal functions, they are Zero
Extend (ZE) function and Truncate (TR). ZE (x) takbit input from x to turn it into a 9-bit by addj two
bits of 0 (zero) in the MSB, while TR (x) took &&-input of x, turn it into 7-bit by removing twlits on the
MSB. It is operated as follows:

1) Li=Ro 5 Li=R
2) Ri= S[Ld (EZE(R) 6) Re=S[L] & ZER)
3) L2=RuPKlij, 7) La=SLs (B TRR,)
4) Re=S[Li FTRRY L Klija 8) Ri=Rs

The results of this function are Al Ry) for 16-bit. FI structure can be seen in [1]. Tdeximal
value of each element of 8nd § can be seen on [1].

b. FO and FL subfunction

FO subfunction FL subfunction

The 32-bit input | of FO is divided into two The 32-bit input of | is divided into two
16-bit halves [1]. 16-bit halves [1].
I=Lo|l R I=L||R

Two sets of subkeys, K@nd Kl, each measuring SubkeyKL;is divided into two parts.
48 bits is divided into three of the 16-bit subkey. KL = KLi1 || KLi2

KO = KOi1 || KOz || KOs Then operated

Kli = Klig || Kliz || Klis R = REBFROL(LMKL; 1)

Every integer j with =] = 3 is defined :

R= FI(Lj1£BKO;; Kl ) BR 1 L' = LEEROLRUKL2)

Li= R The function generate 32-bit outplt || R’. FL

The function generate 32-bit outplt || R. FO  structure can be seen in [1].
structure can be seen in [1].

2.3. Strict Avalanche Criterion (SAC)

Strict Avalanche CriteriofSAC) was introduced by Webster and Tavares in 1@485They said
that f:2] — 57 will satisfy the SAC if, whenever a single inplit is complemented, each of the
output bits changes with a 50% probability. In othwerds,f :Z} — Z Pwill satisfy the SAC criterion if] i,

1 =i = n satisfy the following equation :
BaegrFlc) @ fle @ ol ) = (20020 L2 (1)

We can modify equation (1) to determine the parameaft SAC,K-,.. as follows :

Rone (o) = et (FU) @ Flr @ ef)) =5 s )

Keac (1,7 in therangeof [0,1] and can be interpreted as probabilityaathange in the j-th bit output when

the i-th bit input change. K, - (1,7 is not equal to ¥ for every pair 6§}, then it is not satisfying SAC.
Relative error of SAC results can be obtained leyftimula:

E=maxgzian |2Koar (L7 — L] (3)

l=y=n

2.4. Bit Independence Criterion (BIC)
Bit Independence Criterion(BIC) was introduced by Webster and Tavares. A tionc
fi01" = 10,13 is to satisfy BIC if¥ i,j,% € {1,2,..,m}, with j # &, inverting input bit i causes

output bits j and k to change independently [5].
To measure the bit independence concept, one ileedwrrelation coefficient between the j'th and

k'th components of the output difference string,ichhis called the avalanche vec'im?". Bit independence
parameter corresponding to the effect of the iibuit bit change on the j'th and k’th bits @f[ is defined as:

BICI:RJ, G ) = MO, 1o |COPT (a;",a;':i_)l .................................................................... 4)

BIC parameter for functiofor S-box is defined as
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BIC[f:I = mﬂ’xlsiiﬂ EIC(GJ', Qk) .................................................................................................... (5)
1=

2.5. XOR Table

The XOR table of @ x mis a 2x 2™ matrix [4]. The rows of the matrix represent theuege in the
output of the S-box. An entry in the XOR table af$box indexed by, b) indicates the number of input

vectors P which, when changed from, result in thipat difference offa. XOR value of an S-box is the

highest value of the XOR table entries are defimgd

b=fiP)BfPDS)
The XOR table formula is given bR fi5, 8] = #{F|fIF) B FIF @ &) = &) (6)
wheret € £ and.b € 2T

2.6. Linear Approximation Table (LAT)

The robustness check of an S-box of a linear cngiyais can be seen from the value of LAT-
distribution S-box o x): {0.13* — {0.1]. It can be done by making a linear function ofd&skeach output
or any combination of linear output can be formeth linear function.

LAT distribution of an S-box function is defined #® sum of all variations of the inpiit € Z7
that caused value of the input bits are XOR-opédrate equal to the value of the output bits are XOR-
operated# [7]. Connor [7] explains the theory of LAT that if tieeis an S-box function Z§ —= Z7, that
bijective with n-bit mapping, and if that bijectiwéith n-bit mapping, and if,= is the set of all mappings
called group symmetrical.

Parameter testing criteria based on the result®\dfvalue [7] where:
EAT (o ) = | LATE o B0 — 2% 7H| o (7)

If the value of the LAT is far from ideal, 128, ti&box is increasingly vulnerable to linear
cryptanalysis. On the table value of the LAT, wikk counted as a linear approximation probabilitye T
probability of less or more than half can be shir¢ is a correlation between input and outpuhaboit will
be easy to cryptanalysis. Based on this, it carcdecluded that the complexity of linear cryptaneys
depends on the values of entries in the LAT taB]e [

2.7. Nonlinearity

According to [9], the nonlinearity of the functigh= (£ % .. £): 2§ = Z" wheref: 28 = Z,; i
=1, 2, ...,mis defined as the minimum Hamming distance betwbenset of Affine functions and every
nonzero linear combination of the output coordigaiff, i.e.

NLy=ming o #{x €27 e fla)=w B b (8)
wherew € Z¥ - e Zf™ {0}, & € Z,, andw (X denotes the dot product betwegmandx over Z,,
por]
) = D i i i 9)
i=1

po
wherer = {4,642, ..., €} E 25

For a cryptosystem not to be susceptible to limegptanalysis HLI{; is required to be as close as
possible to its maximum value (perfect nonlinedrifyhe maximum nonlinearity value (perfect nonliriga

il
of the Boolean function given byV; = gnl_ ;71 [6]. The minimum value ofVLM; is close to O,
indicating that the f function is approaching A#ifunction and vulnerable to linear cryptanaly$(§.

3. RESEARCH METHOD

This research will test the F-function of KASUMIing SAC and BIC. There are S-boxes on the FI
subfunction, so we also do the S-box testing uSAg, BIC, XOR Table, LAT, and Nonlinearity. The
research variables of S-box and F-function candsnsn Table 1. Due to limited time and computing
resources, this research uses a sample to reptbsembpulation. We use probability sampling toedetine
simple random sample, where each population hagjaal chance to be selected become the sample.
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As seen in Table 2, the number of samples useddh E-function is 2. We determine the number
of samples refer to the AES algorithm testing ih][ITThe test results will be compared to each otbdind
out which one of the F-subfunctions that has eebeliffusion rate.

Table 1. Research Variables Table 2. Number of samples on F-Functibi,(
_ _ Variable FO andFl)
No Testing Object Input Output
Independent Contro| Dependent . ) Population | Sample
Srand S SvandpS input - Sand goutput No. F-subfunction Variable p(N) (n)p
= SAC F-Function | F-Function input | Subke F-Function output 1. FL FL input 2%2 212
Srand S Srand S input - Srand S output 2. FO FO input 2 212
2 BIC F-Function | F-Function input | Subkey  F-Function outpyt 3. Fl FI input 216 212
3 XOR Table %and S Srand S input - Srand Soutput
4 LAT Srand S Srand S input - Srand Soutput
5 Nonlinearity Srand S S7and Sinput - Srand Soutput

The F-function testing in this research is perfatnme two phases. The first phase is the sample
generating in accordance with the population nundfethe independent variables specified for each F-
subfunction. The margin of maximum relative errerd%. When the input of F-function is treated as an
independent variable then the key as the contnehbkes are held constant with a value of zero. We a
constant zero value as a control variable in otdeeliminate the influence of the control variabl@e
second phase is the sample test by conducting SW@EC. The results of SAC testing were presented i
matrix of percentage frequency of bit distributias well as BIC testing results presented in thairaf
percentage distribution of the correlation coedfitiof bits. After that, we analyze the matrix.

In this study, we also tested thea&hd S S-boxes which is one component of the FI subfondin
detail Furthermore, we would do the S-box analysis basef-box testing criteria. The Shox testing criteria

that will be evaluated including the SAC, BIC, XORble, LAT, and Nonlinearity.

4. RESULTSAND ANALYSIS
4.1. Sbox Testing

We can see in Table 3 that the minimum valuéigf, of S; KASUMI is 0,5 and the maximum
value is 0,5625. From Table 4, we can see thantagimum relative error value is 0,125, so the waér
value ranging betweei2375 = K_,. = 0,5625. Based on the result from Table 3 and Table dait be
concluded that the;&xASUMI does not satisfy the SAC criterion.

Table 3. SAC Value of &KASUMI Table 4. SACRelative ErrorValue of S KASUMI
oi Bit position i Bit position
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 |05625/05 |05 | 05 | 05 | 05| 05 1 |0125]0 0 0 0 0 0

2 |o5 |05 |05 |o05625 05 | 05| 05 2 |o 0 0 0.125] 0 0 0

3 0.5 0.5 0.5 0.5 0.5 0.5625 0.5 3 0 0 0 0 0 0.125 0

4 Jo5 |05 |05 |05 |05 | 05 | 05625 4 o 0 0 0 0 0 0.125

5 0.5 0.5 0.5628 0.5 0.5 0.5 0.5 5 0 0 0.125( 0 0 0 0

6 |05 |05 |05 |05 | 05626 05| 05 6 |0 0 0 0 0.125] 0 0

7 0.5 0.5625| 0.5 0.5 0.5 0.5 0.5 7 0 0.125( 0 0 0 0 0

We can see from Table 5, that the minimum valu&s@af of S KASUMI is 0,5 and the maximum
value is 1. From Table 6, we obtained that the maxn relative error value is 1, so the interval eaaf
K., ranging between = K., = 1. Based on the results in Table 5 and Table &nithe concluded that S
KASUMI does not satisfy SAC criterion.

Table 5. SAC §KASUMI Value Table 6. Relative Error Value SAG BASUMI Testing

oi Bit position oi Bit position
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
1 05 | 05| 05| 05| 05| 05 1 05 05 1 0 0 0 0 0 0 1 0 0
2 05 | 05| 1 05| 05| 05| 05 05 04 2 0 0 1 0 0 0 0 0 0
3 05 | 05| 05| 05| 05| 1 05 05 04 3 0 0 0 0 0 1 0 0 0
4 1 05| 05| 05| 05[] o5/ 05 05 05 4 1 0 0 0 0 0 0 0 0
5 05 | 05| 05| 05| 1 05| 05 05 04 5 0 0 0 0 1 0 0 0 0
6 05 | 05] 05| 1 05| 05/ 05 05 0] 6 0 0 0 1 0 0 0 0 0
7 05 | 1 05| 05| 05[] 05| 05 05 05 7 0 1 0 0 0 0 0 0 0
8 05 | 05| 05| o5| 05| 05 05 0§ 1 8 0 0 0 0 0 0 0 0 1
9 05 | 05] o5| o5 05| 05/ 05 1 0,5 9 0 0 0 0 0 0 0 1 0

Table 7. XOR Table Test Results aféhd S KASUMI

Total of entry
Sbox 0 2 128 512
S, KASUMI 82565 8128 1 )
S KASUMI 131327 130816 0 1
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At the XOR-Table test (see Table 7), it can be $bahthe maximum entries generated hy®d S
KASUMI is 2. On S KASUMI, this value indicates that there is 2 sfiecbutput difference value of 128
possibilities. The maximum probability of the S—bisxé. For example in Table 7, %KASUMI has the
maximum value is 2 and the number of entries isB812means there are 8128 input and output difieze
pairs that produces maximum output difference ashmas 2 of the 128 possibilities and so on. Thewsho
of the entry in the XOR Table shows the amountaxfsible input and output difference in S-box. Tiwedr
or minimum of the number of entries, it is eas@egét the differential equation. So, it can be dashed that
the differential cryptanalysis is not applicableSieand $ KASUMI.

Table 8. LAT test results of,&nd S KASUMI

Shox LAT value

56 64 72 128 240 256 272 512
S KASUMI 4068 8255 4060 1 0 0 0 0
S KASUMI 0 0 0 0 65416 131327 65400 1

Table 9. Minimum and Maximum LAT Value of 8nd S KASUMI
S-box Min M ax LAT -64 LAT-64 LAT-256 LAT-256

S KASUMI 56 72 -8 8 0 0

S KASUMI 240 272 0 0 -16 16

Based on Table 8 and Table 9, the extreme biag watained by S7 KASUMI is ranging between

—% to i Then, it can be inferred that the S7 KASUMI hashue that is close to ideal LAT ranged from

56 to 72 and the bias value ﬁ% close to zero. While the bias value @fKSASUMI is ranging between

—% to % Then it can be inferred that the ISASUMI has a value that is close to ideal LAT radgrom

240 to 272 and the bias vaIue-}_isE% close to zero. Thereforey; @&nd $ KASUMI are not susceptible to
linear cryptanalysis.

: . Table 11. Nonlinearity Minimum Value of
Table 10. Nonlinearity Test Result of&@hd S KASUMI S, and S KASUMI
S-box Nonlinearity Value S-box NLM (min) Probability
56 64 72 240 256 272
S7 KASUMI 8128 16256 8128 0 0 0 S7 KASUMI 56 72/128
So KASUMI 0 0 0 130816 | 261632 130816 S KASUMI 240 272/512

Based on the results of Table 11, it can be coredudhat the minimum nonlinearity value of S
KASUMI is 56. The minimum value of theML; clazeta perfect nonlinearity value, i.e.

™" 7
-1 277t =28 _ 2771 = 55,3431. Besides, the number of vectors in the minimunueadf ALy are
8128 vectors. Then, the number of inputs whichsfatihe equatiorr. flx) =w.x & b is 72. So, the
probability result close té i.e.%.

4.2. Analysisof F-function
We can see from Table 12, that SAC test resultElgfFI and FO subfunctions with input as
independent variable shows that FL, FI and FO natesatisfy SAC with the maximum relative errorfaf
value is 1. The minimum relative error is 0,0380akhis found in FI. FL, FI and FO subfunctions didt
have a good diffusion properties as indicated leylaingest error value that excess of 4%.
Table 11. SAC Test Results of F-function with Inpsifredependent Variable

F-Function SAC Value SAC Value (%) Relative Erro Interval SAC Value Description
FL i i% 5 0 € hone 6 £ 200 e
. L o IR E L P
T e e Y

Based on Table 13, BIC test results of FL, FI &@ subfunctions with input as independent
variable shows that FL is satisfy BIC, whilst FidalRO are not satisfy BIC with maximum value is 13
FO. BIC minimum value is 0 in FL. So it can be sththat the avalanche variables of FL subfunctien a
independent. While the avalanche variables of BIR@ subfunctions are dependent.

Table 12. BIC Test results of F-Function with inpsiirrdependent variable

F-Function BIC Value BIC Value (%) Description
FL Max 0 Passed
Fl Max 0,068 Failed
FO Max 0,133 Failed
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5. CONCLUSION

In this study, we conduct the KASUMI F-functiontiag using SAC and BIC in order to determine
the level of diffusion, respectively. The result®AC testing shows that Fl-subfunction has smatigstive
error. So, it can be stated that the Fl-subfunctias a better rate of diffusion compared with Fd &©
subfunctions. Whilst, the result of BIC testing wisothat FL-subfunction has a zero value. Hencearit be
stated that the avalanche variable of FL-subfunctioindependent. In future, further research naedse
done on the level of confusion in the KASUMI aldbm. It also needs to do more research on the
implementation of algebraic attacks to determine $trength of the structure of KASUMI's F-function
related to the level of diffusion and confusion.
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