
Information Systems International Conference (ISICO), 2 – 4 December 2013 
       

Copyright © 2013 ISICO 

Diffusion Analysis of F-function on KASUMI Algorithm  
Rizki Yugitama, Bety Hayat Susanti, Magfirawaty 

 
Rizki Yugitama, Bety Hayat Susanti, Magfirawaty 

 Crypto Engineering, Sekolah Tinggi Sandi Negara 
 

Keywords: 

KASUMI 
F-function 
Strict Avalanche Criterion (SAC) 
Bit Independence Criterion (BIC) 

 ABSTRACT  

 There are several aspects and criteria that should be considered for designing 
Feistel block cipher, including: block size, key size, number of rounds, subkey 
generation algorithm, round function, fast software encryption/decryption, and 
ease of analysis. The function F is the heart of Feistel block ciphers. It provides 
confusion property that makes the relationship between ciphertext and 
encryption key as statistically complex as possible. One obvious property is 
that F must be nonlinear. The more non linear F, the more difficult any type of 
cryptanalysis be. KASUMI is the Feistel block cipher that used in UMTS, 
GSM, and GPRS mobile communication systems. F-function component of  
KASUMI composed of  FI, FL, and FO functions. 
In this paper, we analyzed the diffusion of F-function of KASUMI to 
determine its cryptographic strength using Strict Avalanche Criterion (SAC) 
and Bit Independence Criterion (BIC). The SAC test result showed that FI-
subfunction has smallest relative error. Whilst, the BIC test results show that 
FL-subfunction has a zero value.  
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1. INTRODUCTION  

KASUMI is a variation of the MISTY1 block cipher algorithm developed by the Security 
Algorithms Group of Experts (SAGE) as the basis of the A5/3 algorithm, which is used for GSM-based 
communication encryption algorithm. KASUMI operates on 64-bit input, using 128-bit key and produces 64-
bit output. This algorithm will produce the output after eight times iteration. Operations that are used include: 
XOR, AND, OR, and bits rotation [1].  

KASUMI algorithm has F-function with nonlinear property that makes it more strength. F-function 
of KASUMI decomposes into a number of subfunctions, namely FI, FO, and FL. FI is a left sub function of 
the FO.  FI has a 16-bit input that divided into two parts: 9-bit to the left and 7-bit to the right. FO has a 32-
bit input that divided to the left and the right side with the same size. FL subfunction has a 32-bit input that 
divided to the left and the right with the same size [1]. 

KASUMI become the standard algorithm for third generation of GSM communication [2]. Several 
attacks have succesfully conducted on KASUMI such as Boomerang and Sandwich attack performed by [3], 
but there is no detail description about the point of weaknesses. Since there is no detail description of 
KASUMI F-function testing from any literatures, we conducted research on the influence of diffusion level 
of F-function of KASUMI. 

 

2. THEORETICAL BACKROUND  
2.1.  KASUMI Algorithm  

KASUMI operates on 64-bit input, using a 128-bit key and a 64-bit output [1]. The input is divided 
into two 32-bit halves, left (L0) and right (R0). This operation will generate output after eight times iteration. 
The structure of KASUMI algorithm and its F-functions can be seen in [1]. 

 

2.2.  F-functions of KASUMI 
a. FI subfunction 

Function FI is a sub function on the left side of FO [1]. The 16-bit input of FI is divided into two 
halves (L0 and R0), which L0 is 9 bits wide and R0 is 7 bits wide. FI used two S-boxes, i.e. S7 that maps 7-bit 



666  | Information, Network and Computer Track  
 

Copyright © 2013 ISICO 

input to 7-bit output, and S9 that maps 9-bit input. This function uses two additional functions, they are Zero 
Extend (ZE) function and Truncate (TR). ZE (x) take 7-bit input from x to turn it into a 9-bit by adding two 
bits of 0 (zero) in the MSB, while TR (x) took a 9-bit input of x, turn it into 7-bit by removing two bits on the 
MSB. It is operated as follows: 

1) L1 = R0 

2) R1= S9[L0] ZE(R0) 

3) L2 = R1 KI i,j, 

4) R2 = S7[L1] TR(R1)  KIi,j,1 

5) L3 = R2 

6) R3= S9[L2]  ZE(R2) 

7) L4 = S7[L3]  TR(R3) 

8) R4 = R3 

The results of this function are (L4 || R4) for 16-bit. FI structure can be seen in [1]. The decimal 
value of each element of S7 and S9 can be seen on [1]. 

 

b. FO and FL subfunction 
FO subfunction 

The  32-bit input I of FO is divided into two 
16-bit halves [1]. 
I = L0 || R0 
Two sets of subkeys, KOi and KIi, each measuring 
48 bits is divided into three of the 16-bit subkey. 
KOi = KOi,1 || KOi,2 || KOi,3 
KI i = KI i,1 || KIi,2 || KIi,3 
Every integer j with 1 j  3 is defined : 

Rj= FI(Lj-1 KOi,j,KI i,j) Rj-1 

Lj= Rj-1 
The function generate 32-bit output L3 || R3. FO 
structure can be seen in [1]. 

FL subfunction 
The 32-bit input of I is divided into two 

16-bit halves [1]. 
I = L || R 
Subkey KLi is divided into two parts. 
KLi = KLi,1 || KLi,2 
Then operated  

R' = R ROL(L KLi,1) 

L' = L ROL(R' KLi,2) 

The function generate 32-bit output L’ || R’. FL 
structure can be seen in [1]. 

 

2.3.  Strict Avalanche Criterion (SAC) 
Strict Avalanche Criterion (SAC) was introduced by Webster and Tavares in 1985 [4]. They said 

that          f :  will satisfy the SAC if, whenever a single input bit is complemented, each of the 
output bits changes with a 50% probability. In other words, f : will satisfy the SAC criterion if ∀ i,  

  satisfy the following equation : 
 ..................................................................... (1) 

We can modify equation (1) to determine the parameter of SAC,  as follows : 
 .................................................................... (2) 

 in the range of [0,1] and can be interpreted as probability of a change in the j-th bit output when 

the i-th bit input change. If  is not equal to ½ for every pair of (i,j), then it is not satisfying SAC. 

Relative error of SAC results can be obtained by the formula: 

 .................................................................................. (3) 

2.4.  Bit Independence Criterion (BIC) 
Bit Independence Criterion (BIC) was introduced by Webster and Tavares. A function 

 is to satisfy BIC if , with , inverting input bit i causes 

output bits j and k to change independently [5]. 
To measure the bit independence concept, one needs the correlation coefficient between the j’th and 

k’th components of the output difference string, which is called the avalanche vector . Bit independence 

parameter corresponding to the effect of the i’th input bit change on the j’th and k’th bits of  is defined as: 

 ........................................................................... (4) 

BIC parameter for function for S-box is defined as 
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 .............................................................................................................. (5) 

2.5.  XOR Table  

The XOR table of a n x m is a 2n x 2m matrix [4]. The rows of the matrix represent the change in the 
output of the S-box. An entry in the XOR table of an S-box indexed by (, b) indicates the number of input 

vectors P which, when changed from, result in the output difference of  XOR value of an S-box is the 

highest value of the XOR table entries are defined by  

 

The XOR table formula is given by :     (6) 
where  and.  
 

2.6.  Linear Approximation Table (LAT) 
The robustness check of an S-box of a linear cryptanalysis can be seen from the value of LAT-

distribution S-box or . It can be done by making a linear function of S-box, each output 
or any combination of linear output can be formed with a linear function. 

LAT distribution of an S-box function is defined as the sum of all variations of the input  
that caused value of the input bits are XOR-operated, , equal to the value of the output bits are XOR-
operated . Connor [7] explains the theory of LAT that if there is an S-box function , that 
bijective with n-bit mapping, and if that bijective with n-bit mapping, and if   is the set of all mappings 
called group symmetrical.  
Parameter testing criteria based on the results of LAT value [7] where: 

 .................................................................................................... (7) 

If the value of the LAT is far from ideal, 128, the S-box is increasingly vulnerable to linear 
cryptanalysis. On the table value of the LAT, will be counted as a linear approximation probability. The 
probability of less or more than half can be said there is a correlation between input and output so that it will 
be easy to cryptanalysis. Based on this, it can be concluded that the complexity of linear cryptanalysis 
depends on the values of entries in the LAT table [8]. 
 

2.7.  Nonlinearity 
According to [9], the nonlinearity of the function  where ; i 

=1, 2, …, m is defined as the minimum Hamming distance between the set of Affine functions and every 
nonzero linear combination of the output coordinates of f, i.e. 

 ........................................................... (8)  

where  , ,  ,  andw x⋅ denotes the dot product between w and x over ,  

 ............................................................................................................ (9) 

where . 

For a cryptosystem not to be susceptible to linear cryptanalysis,  is required to be as close as 
possible to its maximum value (perfect nonlinearity). The maximum nonlinearity value (perfect nonlinearity) 

of the Boolean function given by   [6]. The minimum value of  is close to 0, 

indicating that the f function  is approaching Affine function and vulnerable to linear cryptanalysis [10]. 
 

3. RESEARCH METHOD  
This research will test the F-function of KASUMI using SAC and BIC. There are S-boxes on the FI 

subfunction, so we also do the S-box testing using SAC, BIC, XOR Table, LAT, and Nonlinearity. The 
research variables of S-box and F-function can be seen in Table 1. Due to limited time and computing 
resources, this research uses a sample to represent the population. We use probability sampling to determine 
simple random sample, where each population has an equal chance to be selected become the sample. 
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As seen in Table 2, the number of samples used in each F-function is 212. We determine the number 
of samples refer to the AES algorithm testing in [11]. The test results will be compared to each other to find 
out which one of the F-subfunctions that has a better diffusion rate. 

Table 1. Research Variables  Table 2. Number of samples on F-Function (FL, 
FO andFI) 

No Testing Object 

Variable  

Input Output  

Independent Control Dependent  
No. F-subfunction Variable 

Population 
(N) 

Sample 
(n) 

1. SAC 
S7and S9 S7 and S9 input - S7 and S9 output  

F-Function F-Function input Subkey F-Function output  1. FL FL input 232 212 

2 BIC 
S7 and S9 S7 and S9 input - S7 and S9 output  2. FO FO input 232 212 

F-Function F-Function  input Subkey F-Function output  3. FI FI input 216 212 

3 XOR Table S7 and S9 S7 and S9 input - S7 and S9 output       

4 LAT S7 and S9 S7 and S9 input - S7 and S9 output       

5 Nonlinearity S7 and S9 S7 and S9 input - S7 and S9 output       

 

The F-function testing in this research is performed in two phases. The first phase is the sample 
generating in accordance with the population number of the independent variables specified for each F-
subfunction. The margin of maximum relative error is 4%. When the input of F-function is treated as an 
independent variable then the key as the control variables are held constant with a value of zero. We use a 
constant zero value as a control variable in order to eliminate the influence of the control variables. The 
second phase is the sample test by conducting SAC and BIC. The results of SAC testing were presented in a 
matrix of percentage frequency of bit distribution as well as BIC testing results presented in the matrix of 
percentage distribution of the correlation coefficient of bits. After that, we analyze the matrix. 

In this study, we also tested the S7 and S9 S-boxes which is one component of the FI subfunction in 
detail. Furthermore, we would do the S-box analysis based on S-box testing criteria. The Sbox testing criteria 

that will be evaluated including the SAC, BIC, XOR-Table, LAT, and Nonlinearity. 
 

4. RESULTS AND ANALYSIS  
4.1.  S-box Testing 

We can see in Table 3 that the minimum value of  of S7 KASUMI is 0,5 and the maximum 
value is 0,5625. From Table 4, we can see that the maximum relative error value is 0,125, so the interval 
value ranging between . Based on the result from Table 3 and Table 4, it can be 
concluded that the S7 KASUMI does not satisfy the SAC criterion.  

Table 3. SAC Value of S7 KASUMI   Table 4. SAC Relative Error Value of S7 KASUMI 

ei 
Bit position   

ei 
Bit position  

1 2 3 4 5 6 7   1 2 3 4 5 6 7  
1 0.5625 0.5 0.5 0.5 0.5 0.5 0.5   1 0.125 0 0 0 0 0 0  
2 0.5 0.5 0.5 0.5625 0.5 0.5 0.5   2 0 0 0 0.125 0 0 0  
3 0.5 0.5 0.5 0.5 0.5 0.5625 0.5   3 0 0 0 0 0 0.125 0  
4 0.5 0.5 0.5 0.5 0.5 0.5 0.5625   4 0 0 0 0 0 0 0.125  
5 0.5 0.5 0.5625 0.5 0.5 0.5 0.5   5 0 0 0.125 0 0 0 0  
6 0.5 0.5 0.5 0.5 0.5625 0.5 0.5   6 0 0 0 0 0.125 0 0  
7 0.5 0.5625 0.5 0.5 0.5 0.5 0.5   7 0 0.125 0 0 0 0 0  

 

We can see from Table 5, that the minimum value of  of S9 KASUMI is 0,5 and the maximum 
value is 1. From Table 6, we obtained that the maximum relative error value is 1, so the interval value of 

ranging between . Based on the results in Table 5 and Table 6, it can be concluded that S9 
KASUMI does not satisfy SAC criterion.  

Table 5. SAC S9 KASUMI Value  Table 6. Relative Error Value SAC S9 KASUMI Testing 

ei 
Bit position  

ei 
Bit position 

1 2 3 4 5 6 7 8 9  1 2 3 4 5 6 7 8 9 
1 0,5 0,5 0,5 0,5 0,5 0,5 1 0,5 0,5  1 0 0 0 0 0 0 1 0 0 

2 0,5 0,5 1 0,5 0,5 0,5 0,5 0,5 0,5  2 0 0 1 0 0 0 0 0 0 

3 0,5 0,5 0,5 0,5 0,5 1 0,5 0,5 0,5  3 0 0 0 0 0 1 0 0 0 

4 1 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5  4 1 0 0 0 0 0 0 0 0 

5 0,5 0,5 0,5 0,5 1 0,5 0,5 0,5 0,5  5 0 0 0 0 1 0 0 0 0 

6 0,5 0,5 0,5 1 0,5 0,5 0,5 0,5 0,5  6 0 0 0 1 0 0 0 0 0 
7 0,5 1 0,5 0,5 0,5 0,5 0,5 0,5 0,5  7 0 1 0 0 0 0 0 0 0 

8 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1  8 0 0 0 0 0 0 0 0 1 

9 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1 0,5  9 0 0 0 0 0 0 0 1 0 

 Table 7. XOR Table Test Results of S7 and S9 KASUMI 
 

 

S-box 
Total of entry 

0 2 128 512 
S7 KASUMI 8255 8128 1 0 

S9 KASUMI 131327 130816 0 1 
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At the XOR-Table test (see Table 7), it can be seen that the maximum entries generated by S7 and S9 
KASUMI is 2. On S7 KASUMI, this value indicates that there is 2 specific output difference value of 128 
possibilities. The maximum probability of the S-box is . For example in Table 7, S7 KASUMI has the 

maximum value is 2 and the number of entries is 8128. It means there are 8128 input and output difference 
pairs that produces maximum output difference as much as 2 of the 128 possibilities and so on. The amount 
of the entry in the XOR Table shows the amount of possible input and output difference in S-box. The lower 
or minimum of the number of entries, it is easier to get the differential equation. So, it can be concluded that 
the differential cryptanalysis is not applicable to S7 and S9 KASUMI. 

Table 8. LAT test results of S7 and S9 KASUMI  

S-box 
LAT value 

56 64 72 128 240 256 272 512 
S7 KASUMI 4068 8255 4060 1 0 0 0 0 
S9 KASUMI 0 0 0 0 65416 131327 65400 1 

Table 9. Minimum and Maximum LAT Value of S7 and S9 KASUMI 
S-box Min Max LAT -64 LAT-64 LAT-256 LAT-256 

S7 KASUMI 56 72 -8 8 0 0 
S9 KASUMI 240 272 0 0 -16 16 

 
Based on Table 8 and Table 9, the extreme bias value obtained by S7 KASUMI is ranging between 

 to . Then, it can be inferred that the S7 KASUMI has a value that is close to ideal LAT ranged from 

56 to 72 and the bias value is  close to zero. While the bias value of S9 KASUMI is ranging between 

 to . Then it can be inferred that the S9 KASUMI has a value that is close to ideal LAT ranged from 

240 to 272 and the bias value is  close to zero. Therefore, S7 and S9 KASUMI are not susceptible to 

linear cryptanalysis. 

Table 10. Nonlinearity Test Result of S7 and S9 KASUMI  
 Table 11. Nonlinearity Minimum Value of 

S7 and S9 KASUMI 

S-box 
Nonlinearity Value  

S-box NLM(min) Probability 
56 64 72 240 256 272  

S7 KASUMI 8128 16256 8128 0 0 0  S7 KASUMI 56 72/128 

S9 KASUMI 0 0 0 130816 261632 130816  S9 KASUMI 240 272/512 

 
Based on the results of Table 11, it can be concluded  that the minimum  nonlinearity value of S7 

KASUMI is 56. The minimum value of the  perfect nonlinearity value, i.e. 

. Besides, the number of vectors in the minimum value of  are 
8128 vectors. Then, the number of inputs which satisfy the equation   is 72. So, the 
probability result close to , i.e. . 

 

4.2.  Analysis of F-function 
We can see from Table 12, that SAC test results of FL, FI and FO subfunctions with input as 

independent variable shows that FL, FI and FO  are not satisfy SAC with the maximum relative error of FL 
value is 1. The minimum relative error is 0,0380 which is found in FI. FL, FI and FO subfunctions did not 
have a good diffusion properties as indicated by the largest error value that excess of 4%. 

Table 11. SAC Test Results of F-function with Input as Independent Variable 
 

 

Based on Table 13,  BIC test results of FL, FI and FO subfunctions with input as independent 
variable shows that FL is satisfy BIC, whilst FI and FO are not satisfy BIC with maximum value is 0,133 in 
FO. BIC minimum value is 0 in FL. So it can be stated that the avalanche variables of FL subfunction are 
independent. While the avalanche variables of FI and FO subfunctions are dependent. 

Table 12. BIC Test results of F-Function with input as independent variable 
F-Function  BIC Value BIC Value (%) Description 

FL Max 0 Passed 
FI Max 0,068 Failed 
FO Max 0,133 Failed 

F-Function  SAC Value SAC Value (%) Relative Error Interval SAC Value Description 

FL 
Min 0 1 

 
Failed 

Max 100 1 Failed 

FI 
Min 43,1396 0,1372 

 
Failed 

Max 51.9042 0,0380 Failed 

FO 
Min 43,0175 0,1396 

 
Failed 

Max 52.4902 0,0498 Failed 
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5. CONCLUSION  
In this study, we conduct the KASUMI F-function testing using SAC and BIC in order to determine 

the level of diffusion, respectively. The result of SAC testing shows that FI-subfunction has smallest relative 
error. So, it can be stated that the FI-subfunction has a better rate of diffusion compared with FL and FO 
subfunctions. Whilst, the result of BIC testing shows that FL-subfunction has a zero value. Hence, it can be 
stated that the avalanche variable of FL-subfunction is independent. In future, further research needs to be 
done on the level of confusion in the KASUMI algorithm. It also needs to do more research on the 
implementation of algebraic attacks to determine the strength of the structure of KASUMI’s F-function 
related to the level of diffusion and confusion. 
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