ANALISA MODEL SISTEM DISTRIBUSI PELABUHAN PETI KEMAS DENGAN PENDEKATAN PEMODELAN BERBASIS AGEN

Aulia Ardy, Erma Suryani, Rully Agus Hendrawan

Jurusan Sistem Informasi, Teknologi Informasi, Institut Teknologi Sepuluh Nopember Surabaya Jl. Raya ITS – Kampus ITS Sukolilo Surabaya 60111 (031) 5999944, Fax : (031) 5964965

E-mail: auliaardy@gmail.com

Abstract

Port distribution process plays an important role in channeling goods from consumers to loading and unloading processes. Most companies transporting cargoes as a form of commodities experience a significant loss of \$25,000,000,000. This loss is mostly caused by the company's mismanagement, while slow loading and unloading processes contributing to the port's loss leads to the heaping number of containers stuck in the port. Agent based modelling is a popular method to construct this kind of simulation. The agent generally bears resemblance to humans who have particular functions and roles. The application of the agent in this research is directed towards the port distribution processes, including the loading and unloading processes which take long time and absorb a considerable amount of resources. This is vital to comprehend what has become a hindrance to the processes. In the port, the roles and networks of distribution and transportation are vital. Dispatching goods or materials to a particular place requires huge expenses, which are sometimes inefficient and yet supply chain processes can be executed. In this research, a model is made by applying agent based method to the distribution processes of goods delivery service from consumers to the port. The simulation utilizes the agent based method, which makes possible to recognize the relations among the agents so that it is known what variabels can be optimized. The findings of this research offer a comprehensive study on port distribution model that can recommend resources optimized for the port.

Abstrak

Distribusi pelabuhan mempunyai peranan penting dalam menyalurkan barang dari mulai tangan konsumen hingga proses loading dan unloading kedalam kapal. Pada kebanyakan perusahaan yang mengantarkan peti kemas sebagai bentuk komoditi di pelabuhan mengalami kerugian hampir mencapai \$25.000.000.000. Kerugian tersebut kebanyakan berada pada kesalahan perencanaan perusahaan, sedangkan pada pelabuhan kerugian yang sering dialami adalah lamanya proses bongkar muat sehingga menyebabkan kemacetan dan penumpukan peti kemas didalam pelabuhan. Salah satu metodologi yang populer untuk melakukan simulasi adalah penggunaan agent based. Agen tersebut lebih umumnya bersifat seperti manusia yang mempunyai peran dan fungsi tertentu. Penerapan agen tersebut pada penelitian ini dikhususkan pada simulasi proses distribusi pelabuhan. Termasuk proses bongkar muat yang terkadang memakan waktu lama dan sumber daya yang tidak kecil. Hal ini memicu untuk mengetahui hal apa yang menjadi penghambat proses tersebut. Didalam pelabuhan, peran dan jaringan distribusi dan transportasi sangat vital. Untuk dapat mengirimkan produk atau bahan ke suatu tempat dibutuhkan pengeluaran yang cukup besar, pengeluaran tersebut terkadang belum cukup efisien namun proses rantai pasok dapat berjalan. Penelitian kali ini, dilakukan pembuatan model menggunakan metode agent based pada distribusi layanan pengantar barang dari konsumen hingga ke pelabuhan. Simulasi yang dipakai menggunakan metode agent based Metode tersebut memungkinkan untuk mengetahui hubungan antar agen sehingga didalam penelitian ini dapat diketahui variabel apa saja yang dapat dioptimalkan .Hasil dari penelitian ini adalah memberikan pemahaman tentang analisa model distribusi pelabuhan yang dapat merekomendasikan sumber daya yang harus dioptimalkan.

Kata kunci: peti kemas, distribusi, simulasi, agent based, pelabuhan.

1. PENDAHULUAN

Bisnis dan teknologi informasi memiliki keterkaitan yang sangat erat, dimana pada dasarnya bisnis sangat membutuhkan teknologi informasi, baik itu dalam rangka operasional maupun manajerial. Pada akhir era 1960, jalur perjalanan pembawa produk dibagi menjadi 2 bagian, yaitu kargo (pembawa barang perusahaan dalam jumlah yang terbatas) dan container Liner (pembawa kontainer perusahaan dengan jumlah banyak). Kebanyakan dari jenis peti kemas tersebut, mereka membawanya ke pelabuhan untuk proses bongkar muat hingga pada akhirnya dibawa sampai ke tangan konsumen. Sampai sekarang fungsi dari peti kemas tersebut menjadi sebuah hal yang penting dalam sebuah proses rantai pasok (Song, 2012).

Akhir-akhir ini, ditemukan beberapa layanan logistik khususnya distribusi transportasi adalah hal yang penting. Oleh karena itu, pada beberapa kasus dari layanan ini dibutuhkan sebuah kualitas layanan yang memuaskan bagi konsumen. Penemuan baru banyak dimunculkan bagi layanan ini, dimana *logistic services* juga diasumsikan kepuasan kebutuhan pengirim dan harus berfokus terhadap aliran proses (Jasmine, 2011). Definisi kepuasan bagi internal perusahaan berarti penghematan biaya pengiriman dan ketepatan waktu pengiriman.

Pada awal abad ke 20, perusahan kereta api kanada Canadian Pacific, merupakan salah satu perusahaan dengan jasa transportasi terbesar pada saat itu yang menghubungkan jalur darat dengan laut dengan jumlah pengiriman terbanyak dengan jumlah penumpang yang banyak pada saat itu. Tetapi pada awal 1960, bisnis ini mulai menurun dikarenakan teknologi udara telah ditemukan dan dianggap sebagai sarana transportasi yang cepat pada saat itu. Penemuan teknologi baru kapal udara, perusahaan ini menjadi mengubah langkah strategis demi mempertahankan bisnisnya. Akhirnya dengan prospek pasar yang ada, bisnis peti kemas adalah salah satu bisnis yang menjanjikan (Alix dkk., 1999). Simulasi merupakan sebuah teknik peniruan operasi atau proses yang terjadi didalam suatu sistem dengan bantuan perangkat lunak dan menggunakan perhitungan tertentu sehingga sistem tersebut dapat diperlajari secara ilmiah (Law dan Kelton, 1991). Penggunaan metode simulasi dapat dijadikan acuan untuk mendeskripsikan atau menggambarkan kondisi sebuah sistem. Simulasi dapat dijadikan sebuah alternatif untuk mempertimbangkan dan memperkirakan sebuah sistem baru dalam bentuk pemodelan, sebelum diterapkan dalam bentuk yang sesungguhnya dalam dunia nyata.

Forrester (1961), mendefinisikan sebuah simulasi sebagai bagian dari penyelesaian atau perhitungan tahap demi demi tahap dari persamaan matematika yang menggambarkan keadaan dari sebuah sistem untuk mengetahu perubahan apa yang akan terjadi pada sistem tersebut sehingga dapat diamati perubahan perilaku dan kemungkinan yang akan terjadi.

Perhitungan menggunakan *agent* pertama sekali dikembangkan berdasarkan intelligent agent kemudian berkembang menjadi multiagent system dan agent-based simulation models. Pada penelitian ini, digunakan satu terminologi yang disebut dengan Agent-based atau Massively multiagent modelling (ABM) (Ahmed, 2011). Agent Based Model sering digunakan dibeberapa studi kasus yang menerapkan model secara kompeks, beberapa dari model tersebut digunakan dibeberapa bidang ilmu seperti Biologycal Sistems menjadi Social Sistem, dari sistem keuangan menjadi supply chains, dari perilaku koloni lebah menjadi *modelling traffic* lights (Ahmed, 2011). Dari beberapa contoh tersebut, diketahui bahwa agent based mempunyai kelebihan untuk memodelkan sesuatu yang sederhana menjadi kompleks terhadap suatu sistem.

Simulasi dengan menggunakan teknik diskrit telah digunakan selama 40 tahun. Kemunculan dari teknik agent based pada awal tahun 1990 menjanjikan sesuatu yang baru, menarik dan membantu operational research. Penggunaan (Agent-Based Modelling) ABM dapat dikombinasikan dengan (Sistem Dinamik) SD yang akan menyebabkan fenomena baru didalam dunia permodelan dan simulasi.

2. METODOLOGI

Pada bagian ini akan dijelaskan mengenai metode penelitian yang digunakan dalam penelitian. Setelah melakukan observasi, didapatkan model proses bisnis yang berlangsung selama ini. Pada gambar 1 dijelaskan bahwa perusahaan pembawa kontainer atau yang biasa disebut dengan *shipping alliance* membawa kontainer ke dalam pelabuhan menggunakan truk pengantar. Setiap kontainer yang berada di pelabuhan, mempunyai jadwal keluar dari pelabuhan. Pada kondisi tertentu, kontainer vang mempunyai jadwal kapal yang mempunyai jadwal kedatangan yang cukup lama, kontainer akan diletakkan didalam yard (lapangan penampung kontainer). Untuk dapat diletakkan didalam yard, didalam pelabuhan terdapat alat berat yang disebut dengan RTG (Rubbed Tyre Gantry). RTG tersebut bertugas untuk memindahkan atau mengambil kontainer dari dalam yard. RTG tersebut akan bertugas jika terdapat

kontainer yang telah memasuki jadwal bongkar dan mengambil kontainer untuk selanjutnya dibawa oleh truk khusus pelabuhan dan akan dipindahkan kedalam kapal melalui alat berat yang bernama *Container Crane*. Peti kemas adalah sebuah wadah demgan bentuk persegi panjang yang diangkut oleh truk untuk kemudian didistribusikan melalui jalur laut menggunakan kapal dari satu benua ke benua lain. Wadah tersebut bervariasi dari ukuran dan jenis. Standar dari wadah tersebut terdiri dari dua jenis yaitu; *Twenty-Foot equivalent-Unit* (TEU) dan *Forty-Foot sized* (FEU).

2.1 Pengumpulan Data

Pengumpulan data yang dilakukan adalah dengan melakukan proses pengamatan dan mencatat waktu layanan alat berat untuk memindahkan 1 kontainer. Pencatatan waktu layanan di pelabuhan dilakukan berdasarkan 3 jenis alat berat yang beroperasi, yaitu RTG, Truk pelabuhan dan *Container Crane*.

2.2 Pembuatan Model Agent Based

Pada tahap ini, akan dilakukan aktivitas desain dari model simulasi dan dilakukan analisa untuk memperoleh skenario. Pemodelan sistem ini akan dibuat dengan bantuan perangkat lunak vensim untuk membuat diagram kausatik (sebagai kerangka berfikir sistem), MS Visio (sebagai alur/flowchart sistem) dan terakhir adalah anylogic sebagai representasi model yang telah dibuat. Dalam pembuatan model simulasi terdapat beberapa langkah yang harus dilakukan, antara lain:

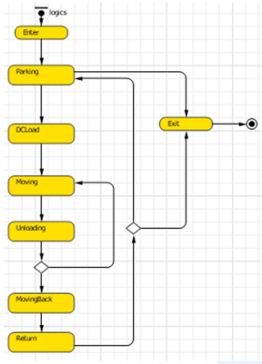
<u>Pendefinisian sistem</u>, tahap pertama dalam pengembangan model simulasi ini meliputi:

- Penentuan batasan sistem
- Identifikasi variabel utama

- Penentuan konseptualisasi model. Pada tahap ini dilakukan pembuatan kerangka kerja konseptual yang berbentuk skema atau sistem, dimana menggambarkan serangkaian ide mengenai variabel yang penting. Model konseptual dilambangkan dengan pembuatan flowchart untuk menentukan proses yang terjadi didalam simulasi menggunakan metode agent based. Proses ini selanjutkan akan dituangkan melalui statechart yang akan menjadi sifat dari agen tersebut (Gambar 1).
- Verifikasi model. Verifikasi model merupakan proses pengecekan terhadap model apakah sudah bebas dari kesalahan (error). Verifikasi mempunyai kaitan dengan penentuan model simulasi yang konseptual (model asumsi) dengan tepat menerjemahkan kedalam suatu program computer (Miftakhol, 2008).

Pada penelitian sebelumnya dijelaskan proses pembuatan model dari sebuah *shipping management*. Didalam sebuah distribusi menggunakan truk terdapat batasan sebagai berikut (Lukas, 2010):

- Setiap truk mempunyai batasan dalam menampung jumlah volume. Apabila berlebih maka diperlukan truk lain untuk menampung yang tersisa.
- Kemampuan gate untuk menampung jumlah truk adalah terbatas, oleh karenanya terdapat antrian truk dimana harus menunggu sampai batas yang tidak ditentukan agar tidak terjadi overloaded gate.


Gambar 2 menunjukkan Class Diagram dari Truck. Dari seluruh variabel yang ada, variable kapasitas yang akan diproses lebih lanjut.

Gambar 1. Gambaran Umum permasalahan

Gambar 2. Class Diagram dari Truk (Merkuryeva, G and Bolshakovs V.2010)

Gambar 3. Statechart agen truk di pelabuhan

Gambar 3 dan 4 menunjukkan bahwa dalam proses bongkar muat terdapat proses parking, proses ini dimisalkan sebagai proses menunggu apabila pelabuhan dalam keadaan sibuk. Jika keadaan sudah memungkinkan, langkah selanjutnya adalah bongkar muat/memasukkan muatan (load, unloading). Didalam penelitian kali ini, dibahas bagaimana proses distribusi sebuah truk hingga dapat bongkar muat di pelabuhan. Penelitian tersebut menghasilkan sebuah kesimpulan terhadap kapasitas truk yang dapat mempengaruhi keuntungan perusahaan. Setelah mendefinisikan variabel utama menggunakan state-chart diagram, langkah selanjutnya adalah menerjemahkan model tersebut kedalam perangkat lunak yang bernama anylogic (Gambar 3).

2.3 Validasi Model

Setelah langkah simulasi dilakukan, dan didapatkan hasil. Rumus 1 dan 2 adalah rumus untuk melakukan validasi terhadap *mean comparison* data.

$$E1 = \frac{\left[\overline{S} - \overline{A}\right]}{\overline{A}} \tag{1}$$

S = nilai _ rata - rata _ hasil _ simulasi A = nilai _ rata - rata _ data

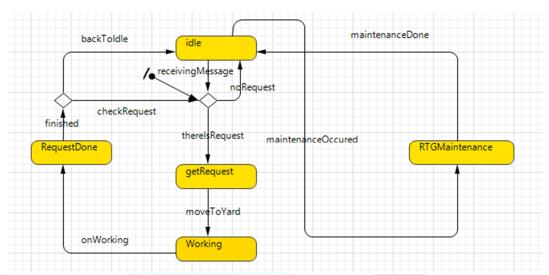
Jika hasil E1 kurang dari 0.5 maka model dianggap valid. Jika tidak maka harus dilakukan pengecekan ulang terhadap model tersebut dengan memeriksa variabel serta rumus yang dipakai. Sedangkan untuk melakukan nilai terhadap pengecekan *error variance* digunakan rumus seperti dibawah ini.

$$E2 = \frac{|Ss - Sa|}{Sa}$$

$$\overline{S} = s \tan dar _ deviasi _ dari _ data _ simulasi$$

$$\overline{A} = s \tan dar _ deviasi _ dari _ data$$
(2)

Untuk perhitungan nilai *error variance* apabila nilai E2 kurang dari 30% maka harus dilakukan pengecekan ulang terhadap model dan data.


3. HASIL dan PEMBAHASAN

Pada penelitian kali ini, terdapat 5 agen yang berperan dalam sistem distribusi pelabuhan. Dimana agen-agen tersebut mempunyai fungsi untuk menangani kontainer yang berada didalam pelabuhan. Kelima agen tersebut adalah RTG, truk khusus pelabuhan, Crane, Kontainer dan kapal. Dibawah ini adalah penjelasan dari kelima agen tersebut.

3.1 Implementasi Perilaku agen RTG

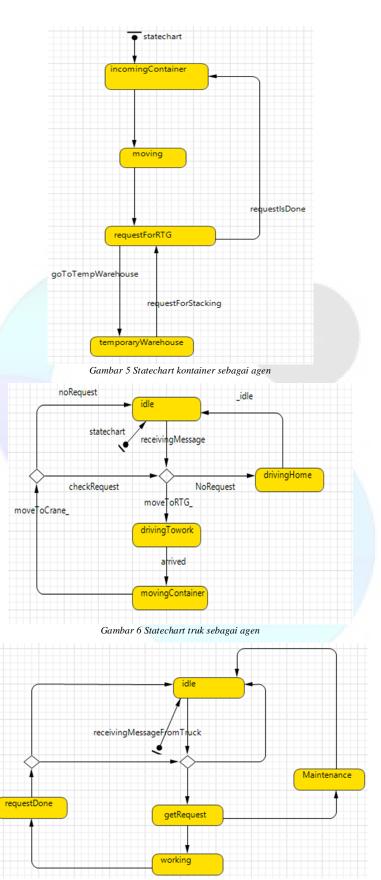
Rubber-Tyred Gantry-Crane (RTG atau RTG-C) digunakan sebagai alat untuk menumpuk dan mengambil kontainer kedalam yard. Alat ini dioperasikan oleh seorang operator yang merupakan buruh pelabuhan. Mekanisme kerja alat ini hanya menumpuk dan mengambil kontainer yang datang atau yang akan keluar dengan cara maju mundur sepanjang yard.

Pada implementasinya, RTG digolongkan sebagai sebuah alat sederhana mempunyai dua perilaku, idle dan working. Melalui proses pengamatan dilapangan, terdapat 5 perilaku dari RTG yang akan didefinisikan melalui penelitian kali ini.

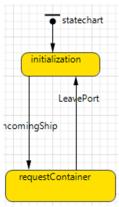
Gambar 4. Statechart RTG sebagai agen

Proses pertama terjadi ketika RTG mendapat request untuk memindah kontainer yang dibawa oleh truk pembawa kontainer untuk dimasukkan ke dalam yard. Selanjutnya, jika terdapat kontainer yang telah memasuki periode untuk dipindahkan kedalam kapal, maka kontainer tersebut akan diangkut dari dalam yard dan di pindahkan kedalam truk pengangkut khusus pelabuhan untuk selanjutnya diberikan kepada crane. Proses tersebut akan terus terjadi sampai RTG tidak mendapat request untuk memindahkan atau mengambil kontainer dari dalam yard. Apabila tidak terdapat request, maka RTG akan kembali ke posisi idle atau tidak sedang melakukan proses bongkar muat.

3.2 Implementasi Perilaku Agen Container


Container atau di dalam bahasa Indonesia adalah peti kemas, adalah wadah untuk menyimpan benda atau barang yang ditampung dalam kapasitas besar. Pada penelitian kali ini, kontainer yang dibahas adalah kontainer yang datang ke dalam pelabuhan. Pada gambar 5 dapat dilihat bahwa truk pertama pembawa kontainer datang ke pelabuhan dan menuju kepada RTG, proses tersebut digambarkan oleh statechart "moving". Statechart tersebut memberikan status ketika truk kontainer sedang didalam pelabuhan dan bergerak menuju RTG tertentu yang memindahkan kontainer kedalam pelabuhan. Ketika RTG selesai mengangkat kontainer, maka truk pembawa kontainer akan meninggalkan pelabuhan dan proses untuk memindahkan kontainer selesai. Terdapat juga kondisi yang menjelaskan bahwa ketika pelabuhan dalam keadaan penuh, maka kontainer akan menuju temporary warehouse atau gudang penyimpanan sementara kontainer.

3.3 Implementasi Perilaku Agen Truck


Selain terdapat alat berat yang berfungsi untuk memindahkan kontainer baik kedalam yard, keluar yard maupun ke kapal, terdapat juga truk sebagai sarana transportasi untuk memindahkan kontainer dari yard menuju crane untuk selanjutnya dipindahkan ke dalam kapal. Dapat dilihat pada gambar 6, proses truk pelabu-han pertama yang membawa kontainer menda-pat pesan untuk membawa kontainer. Ketika mendapat pesan, truk pelabuhan khusus untuk mengangkat kontainer didalam pelabuhan ini menuju ke RTG untuk mengambil kontainer dan bergerak menuju *crane*. Proses membawa kontainer tersebut akan selesai apabila tidak terdapat *request* untuk membawa kontainer.

3.4 Implementasi Perilaku Agen Crane

Container Crane adalah alat berat pengangkut kontainer dari darat menuju ke dalam kapal atau sebaliknya. Alat ini memiliki dua prilaku dasar, aktif memindahkan kontainer dan tidak sedang sedang memindahkan kontainer. Proses perpindahan kontainer dimulai ketika request untuk memindahkan kontainer diterima oleh crane melalui truk pelabuhan. Setelah proses untuk memindahkan kontainer kedalam pelabuhan selesai, maka yang dilakukan crane adalah memeriksa request. Jika terdapat request untuk memindahkan kontainer, maka proses pemindahan kontainer kedalam kapal akan terus terjadi hingga proses tersebut selesai.

Gambar 7. Statechart crane sebagai agen

Gambar 8. Statechart ship sebagai agen

3.5 Implementasi Perilaku Agen Ship (kapal)

Kapal peti kemas adalah kapal khusus pengangkut peti kemas yang datang kedalam pelabuhan. Kapal yang datang kedalam pelabuhan memiliki jadwal yang sama terhadap kontainer yang akan diangkut kedalam kapal atau kontainer yang akan dikeluarkan dari dalam kapal. Kapal tersebut bertambat di pelabuhan menggunakan jangkar dan menunggu hingga peti kemas yang siap diangkut kedalam kapal selesai terangkut. Gambar 7 dan 8 menunjukkan 2 statechart agen kapal. Agen kapal datang ke pelabuhan melalui selang waktu tertentu kemudian meminta request untuk mendapat kontainer. Ketika kontainer telah selesai dipindahkan kedalam kapal, maka langkah selanjutnya yang dilakukan adalah meninggalkan pelabuhan.

3.6 Uji Coba dan Implementasi

Tujuan dilakukannya validasi adalah untuk memperoleh representasi yang akurat dan pemahaman yang lebih terhadap model.

3.7 Verifikasi

Verifikasi simulasi dibutuhkan untuk membuktikan bahwa proses simulasi telah berjalan dengan benar sesuai dengan proses simulasi yang diinginkan. Menurut Sargent (1999) verifikasi model yang terkomputerisasi (computerized) memastikan bahwa pemrograman komputer dan implementasi model konseptual adalah benar. Untuk membantu memastikan bahwa sebuah program komputer adalah benar, desain program dan prosedur pengembangan pada bidang perangkat lunak sebaiknya digunakan dalam pengembangan dan implementasi program komputer.

RTG sebagai agen

Verifikasi pertama adalah verifikasi terhadap agen RTG. RTG mempunyai fungsi untuk memindahkan dan mengambil kontainer dari dalam yard. Dalam hal ini, proses verifikasi yang dila-

kukan adalah mengetahui status RTG apakah sedang melakukan proses bongkar muat. Dalam penelitian ini, jumlah agen RTG berjumlah dua buah. RTG pertama bernama root.rtgs[0] sedangkan RTG kedua bernama root.rtgs[1]. Pada table 4 ditunjukkan tabel dari hasil proses verifikasi untuk agen RTG. Dapat dilihat pada tabel 4, RTG bergerak ke sesuai dengan tujuan yard dan melakukan fungsi memindahkan atau mengambil kontainer sesuai dengan yard yang dituju. Apabila tidak terdapat request, maka RTG akan kembali ke posisi semula.

Kontainer sebagai agen

Verifikasi kedua adalah verifikasi perilaku agen kontainer. Agen kontainer pertama datang ke pelabuhan dengan meminta request kepada RTG untuk dipindahkan ke dalam pelabuhan. Tabel 5 adalah hasil dari proses verifikasi terhadap agen kontainer.

Dapat dilihat pada tabel 4, terdapat dua jenis RTG root.rtgs[0] adalah jenis RTG yang pertama, sedangkan root.rtgs[1] adalah jenis RTG yang kedua. Sedangkan untuk kontainer, pada angka diakhir yang berada didalam "[]" menunjukkan nomor kontainer. Pada baris pertama dan kedua diatas, terdapat waktu kedatangan kontainer yang bersamaan, namun pada kolom RTG, kontainer tersebut di proses oleh RTG yang berbeda.

Truk sebagai agen

Verifikasi ketiga adalah verifikasi agen truk. Agen truk berperan sebagai pembawa kontainer dari lokasi RTG menuju Crane. Didalam agen truk, terdapat 5 buah truk yang didefinisikan. Truk pertama bernama *root.trucks[0]*, hingga truk kelima bernama *root.trucks[5]*. Pertama sekali truk di berada diposisi tertentu ketika truk tidak mendapatkan request untuk membawa kontainer. Tabel 6 menunjukkan hasil dari proses verifikasi truk sebagai agen.

Tabel 6 adalah hasil interaksi dari agen truk terhadap RTG ketika truk mendapatkan request untuk membawa kontainer menuju crane. Dapat dilihat bahwa truk menuju RTG apabila terdapat kontainer yang siap diangkut. Apabila tidak terdapat kontainer yang siap diangkut, maka truk akan berada pada posisi semula (parkir) untuk menunggu request selanjutnya. Proses agen truk untuk menuju *crane* dapat dilihat pada tabel 6. Tabel 7 adalah hasil interaksi dari agen truk terhadap Crane. Truk menuju crane untuk menyerahkan kontainer yang siap untuk diangkut kedalam kapal. Setelah truk selesai memberikan kontainer kepada crane, maka truk akan kembali ke posisi semula atau menuju ke RTG apabila terdapat request kontainer yang menunggu.

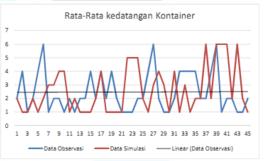
Crane sebagai agen

Verifikasi keempat yang dilakukan adalah verifikasi terhadap agen crane. Seperti yang telah dijelaskan sebelumnya, crane adalah sebuah alat berat yang berfungsi untuk memindahkan kontainer kedalam kapal. Crane tersebut tidak berpindah tempat, hanya capit yang berada pada crane yang berpindah sehingga dapat memindahkan kontainer. Seperti yang telah dijelaskan sebelumnya, aktivitas crane disini berhubungan dengan truk pelabuhan yang membawa kontainer. Truk tersebut akan memberikan kontainer kepada crane untuk selanjutnya dipindahkan kedalam pelabuhan. Dibawah ini adalah hasil dari verifikasi terhadap agen crane dalam simulasi. Tabel 8 menunjukkan setiap crane memindahkan 1 kontainer pada waktu tertentu.

Ship sebagai agen

Verifikasi kelima adalah pencatatan kedatangan dan kepergian agen *ship* (kapal). Dalam penelitian ini, jumlah kapal yang didefinisikan adalah sebanyak 2 buah. Di mana kapal pertama bernama *root.ships[0]* dan kapal kedua bernama *root.ships[1]*. Tabel 9 adalah hasil dari verifikasi agen kapal. Hasil dari verifikasi pada tabel 9, menghasilkan pencatatan waktu terhadap kedatangan kapal dan waktu kepergian dalam satuan menit.

Proses muat didalam simulasi


Verifikasi keenam adalah proses muat *yard* yang dilakukan oleh agen RTG. Dalam penelitian ini, terdapat 4 *yard*, masing-masing *yard* dinamakan *yard1*, *yard2*, *yard 3* dan *yard4*. Posisi kontainer didalam *yard* didefinisikan sebagai [x][y][z] dimana posisi x adalah posisi di dalam koordinat sumbu x, posisi y adalah posisi di dalam koordinat sumbu y sedangkan posisi z adalah posisi di dalam koordinat sumbu z. Tabel 10 adalah hasil dari proses verifikasi terhadap proses muat. Dapat dilihat pada tabel 10, setiap RTG memindahkan kontainer kedalam *yard* berdasarkan selang waktu tertentu.

Proses bongkar didalam simulasi

Verifikasi terakhir adalah menjelaskan proses bongkar di dalam *yard*. Proses bongkar sendiri dilakukan apabila kontainer memasuki masa angkut dari dalam *yard* dan dipindahkan ke kapal yang mengangkut kontainer tersebut. Posisi dan jumlah *yard* sama dengan proses bongkar, sehingga tidak terdapat perbedaan didalam posisi. Dapat dilihat pada tabel 11, proses bongkar terjadi terhadap *yard* yang berbeda dan pada posisi tertentu.

3.8 Validasi

Langkah selanjutnya yang dilakukan adalah pengecekan data terhadap model yang dibuat. Validasi yang dilakukan adalah melakukan perhitungan terhadap data simulasi dan standar deviasi. Yaman Barlas dalam penelitiannya menjelaskan bahwa untuk melakukan validasi terhadap data simulasi dibutuhkan perbandingan antara data real dan data hasil simulasi. Terdapat dua jenis validasi yang dilakukan, yaitu perhitungan nilai rata-rata simulasi yang mengandung nilai apabila perbandingan dari data real dan data hasil dari simulasi menunjukkan nilai dibawah dari 5%, maka model dianggap valid. Sedangkan perhitungan kedua yang dilakukan adalah melakukan perbandingan standar deviasi. Perhitungan untuk standar deviasi dianggap valid apabila perbandingan data antara data real dan data hasil simulasi berada dibawah nilai 30%. Tabel 1 adalah hasil validasi terhadap nilai data real dan data hasil simulasi.

Gambar 9. Rata-rata kedatangan kontainer

Tabel 1. Data kedatangan kontainer

Ukuran	Data Observasi	Data Simulasi
Min	1	1
Max	6	6
Mean	2.488889	2.622222
Simpangan Baku	1.455744	1.722695

Rata-rata kedatangan Kontainer

Perhitungan pertama yang dilakukan adalah menghitung jumlah kedatangan kontainer. Satuan yang digunakan untuk menghitung data tersebut adalah kontainer dalam jumlah. (Gambar 9).

Setelah melakukan uji coba didapatkan nilai rata-rata jumlah kedatangan kontainer adalah 5% yang berarti data valid. Sedangkan untuk perhitungan standar deviasi, diperoleh angka 15% yang menjadikan data observasi terhadap hasil simulasi dinyatakan valid. Selain dilakukan perhitungan validitas rata-rata kedatangan kontainer, juga dilakukan perhitungan validitas pada data simulasi yang lain, yaitu; Waktu Kedatangan Kapal, Waktu Perpindahan Kontai-

ner Menggunakan RTG, Waktu Perpindahan Kontainer Menggunakan Truk, dan Waktu Perpindahan Kontainer Menggunakan *Crane*.

3.9 Skenario Simulasi

Menurut penelitian yang dilakukan oleh Supriyono (Hasad, 2009), pembagian tingkat kemampuan kinerja operator pelabuhan dibagi menjadi 3 kategori, Rendah, Menengah dan Tinggi. Untuk membuat skenario pengaruh operator, ditambahkan 2 agen yang berfungsi sebagai operator yang akan mengoperasikan alat RTG dan *Crane*. Penambahan 2 agen tersebut akan mengukur efektivitas kinerja alat berdasarkan kemampuan dan pengalaman kerja operator. Data ini didapatkan melalui proses wawancara.

Waktu perpindahan operator berpengalaman menghasilkan 30% lebih cepat dari pada waktu maksimal yang menjadi standar tolak ukur perpindahan kontainer (3 menit). Dari angka yang diperoleh, 30%, maka penelitian ini menyajikan proses pertambahan nilai kecepatan operator. Dimulai dari 5%, 10%, 15% dan 30% untuk mengetahui kombinasi dari waktu kerja RTG, waktu kerja *Crane* dan berapa lama kapal berada di dalam pelabuhan.

Selain melakukan proses pengurangan nilai waktu layanan, terdapat faktor lain yang mempengaruhi besarnya layanan RTG dan *Crane* yaitu, waktu perawatan RTG dan *crane* serta keterlambatan kedatangan kapal. Perawatan kapal dibagi atas 2 jenis periode yaitu selama 15 dan 30 hari secara berkala. Untuk jadwal kedatangan kapal, skenario yang digunakan adalah memberikan nilai apabila kapal datang terlambat lebih dari 1,2 dan lebih dari 2 jam.

Pengurangan 5% waktu kerja *crane* dengan waktu normal RTG

Skenario pertama adalah pengurangan waktu kerja *crane* sebanyak 5% dan dikombinasikan dengan waktu normal RTG. Tabel 2 menunjukkan hasil simulasi dengan menggunakan skenario pertama.

Tabel 2. Hasil skenario 1 (satuan:menit)

Ukuran	RTG	Crane 5%	Berth
Min	1.000976	1.000721	42.85529
Max	4.217905	4.147753	3931.501
Mean	2.132559	2.233277	606.3458
Simpangan Baku	0.576616	0.873509	1020.849
<2	905	993	
2 <= x < 3	1044	616	
>=3	141	481	

Gambar 10. Pembagian besasran waktu layanan RTG untuk skenario 1

Gambar 11. Pembagian besaran waktu layanan crane untuk skenario 1

Pada tabel 2, dapat dilihat bahwa dari hasil skenario pertama menghasilkan rata-rata nilai tambat kapal sebesar 606.34 menit dengan pembagian sebanyak 50% besaran waktu layanan RTG yang berada diantara 2 dan 3 menit serta 48% besaran waktu layanan *crane* yang berada dibawah 2 menit. Selain skenario diatas, dengan perhitungan yang sama dilakukan pula simulasi pada skenario lain seperti yang ditunjukkan pada tabel 3.

3.10 Analisa Hasil Skenario

Berdasarkan hasil simulasi skenario yang dilakukan, didapatkan hasil bahwa nilai lama waktu yang ideal adalah kurang dari 1 hari. Hal tersebut dapat didukung oleh penggunaan alat berat di pelabuhan dan keahlian operator. Kombinasi antara nilai waktu layanan RTG dan *Crane* menghasilkan nilai lama waktu kapal tambat didalam pelabuhan. Tabel 12 adalah perbandingan rata-rata waktu lama tambat kapal dipelabuhan berdasarkan hasil skenario.

Dari tabel 12 diatas, dapat dilihat bahwa nilai terendah dari waktu lamanya kapal di pelabuhan adalah 554.39 menit atau sekitar 6 jam terhadap jumlah agen 4000 kontainer yang dioperasikan. Hal tersebut dapat diartikan, bahwa melalui skenario 3 yang dilakukan, untuk mengoperasikan 4000 kontainer hanya dibutuhkan pengurangan 15% waktu efektif layanan alat berat *crane* yang menyebabkan kapal tidak lama di dalam pelabuhan.

Sedangkan untuk penilaian jumlah waktu layanan yang efektif dibagi tiga kategori. Kategori pertama adalah jumlah waktu layanan yang besarnya lebih kecil dari 2 menit. Untuk kategori pertama, skenario yang tepat diperoleh dari skenario 22 oleh agen RTG, dimana diperoleh sebanyak 2498 transaksi dan sebanyak 2834 untuk proses pemindahan kontainer yang dilakukan crane untuk pembagian waktu layanan kurang dari 2 menit. Proses pemindahan kontainer di pelabuhan tempat studi kasus dilakukan, tidak boleh lebih dari standar waktu yaitu hanya 5 menit. Berdasarkan hasil peninjauan lapangan yang dilakukan, proses yang terjadi untuk proses pemindahan kontainer dipengaruhi oleh operator dalam mengoperasikan alat berat tersebut. Untuk skenario 25 dan seterusnya, pembagian skenario akan dipisah berdasarkan lamanya kedatangan kapal. Pembagian tersebut dapat dilihat pada tabel 14.

Tabel 3. Jumlah waktu layanan RTG dan Crane di pelabuhan

Dari tabel 15 dapat dilihat bahwa untuk kategori 1 terdapat nilai minimal dan sebesar 556 menit atau sekitar 9 jam dan 821 menit atau sekitar 13 jam untuk layanan kapal dipelabuhan. Hal tersebut dapat diartikan untuk dapat mempercepat skenario jika terdapat kapal yang telat berkisar 1 jam. Maka perawatan secara berkala setiap 15 hari dapat dilakukan untuk memperkecil macetnya pelabuhan.

Untuk kategori 2 nilai keterlambatan kapal berkisar 2 jam, dapat di lihat nilai terkecil untuk waktu layanan kapal didalam pelabuhan adalah 670 menit atau sekitar 11 jam waktu kapal di pelabuhan dapat dilakukan jika mengiginkan keadaan kapal yang padat untuk mengantri. Untuk kategori 3 nilai terkecil dari waktu lama layanan kapal di pelabuhan adalah 670 menit atau sekitar 11 jam untuk melakukan periode perawatan alat berat per 15 hari dan nilai keterlambatan kapal berkisar 2 jam.

Untuk kategori 4 nilai terkecil dari waktu layanan kapal dipelabuhan adalah 553 menit atau sekitar 9 jam. Untuk kategori 5, terdapat nilai 574 menit atau sekitar 9 jam waktu layanan kapal dipelabuhan. Sedangkan untuk kategori yang terakhir, terdapat nilai 574 atau sekitar 6 jam waktu layanan.

Dapat disimpulkan bahwa terdapat nilai minimal terendah, 6 jam waktu pelayanan kapal perawatan kapal dilakukan setiap 30 hari secara berkala. Dilihat dari jenisnya, RTG dan Crane mempunyai peran penting dalam operasional pelabuhan, dapat dibayangkan jika terjadi kerusakan terus menerus terhadap RTG dan Crane tersebut, maka pelabuhan tidak bisa beroperasi secara maksimal. Adapun untuk memperoleh nilai minimal untuk pengoperasian 2000 kontainer dapat ditemukan bahwa hanya membutuhkan waktu sekitar 6 jam bagi kapal untuk berada didalam pelabuhan. Selain itu, kapal yang mengantri tidak membutuhkan waktu yang lama untuk bersandar dipelabuhan, keadaan tersebut mempengaruhi jumlah antrian di pelabuhan.

4. SIMPULAN dan SARAN

Berdasarkan hasil simulasi dan eksperimen berbagai uji coba dapat diambil kesimpulan sebagai berikut:

1. Metode pendekatan *agent based* didalam meneliti proses distribusi didalam pelabuhan memungkinkan untuk melihat proses lebih detail terhadap proses peletakan kontainer, umur kontainer didalam pelabuhan serta melihat sifat dari agen atau entitas yang berada didalam pelabuhan lebih detail.

- 2. Didalam penyusunan model agent based untuk proses distribusi pelabuhan, terdapat proses komunikasi antar agen yang menandakan bahwa antara satu entitas dan entitas lainnya saling terhubung dan bergerak dalam satu lingkungan yang sama.
- 3. Dari hasil simulasi yang dilakukan, proses yang memakan waktu yang lama adalah pada saat melakukan proses bongkar muat kedalam yard dan memindahkan kontainer kedalam kapal.
- 4. Dari hasil skenario yang dilakukan, perlakuan perawatan (Maintenance) terhadap setiap agent mutlak harus dilakukan oleh pihak pelabuhan secara berkala. Dengan menerapkan nilai periode perawatan setiap 30 hari, maka diketahui lamanya kapal parkir di pelabuhan semakin kecil. Hal ini didukung juga oleh kemampuan RTG dan Crane yang mampu memindahkan kontainer kurang dari 2 menit.
- 5. Dengan mendapatkan nilai waktu lama kapal dipelabuhan yang rendah, maka perusahaan penyedia kapal (yang membawa kontainer), tidak akan mengeluarkan biaya yang sedikit ketika kapal parker dipelabuhan.
- 6. Dari segi pelabuhan, penetapan 1 hari maksimal kapal parkir di pelabuhan dapat mengurangi kemacetan didalam pelabuhan karena jika kapal meninggalkan pelabuhan kurang dari waktu yang ditetapkan, maka kapal lain yang mengantri dapat masuk kedalam pelabuhan.
- 7. Dari segi makro ekonomi, maka dapat dilihat bahwa semakin banyaknya aktivitas kontainer yang keluar dan masuk ke pelabuhan, maka tingkat daya ekspor dan impor kontainer akan semakin tinggi. Sedangkan dari segi mikro ekonomi, perusahaan dapat meningkatkan keuntungan karena aktivitas kapal yang berada didalam pelabuhan tergolong cepat.
- Untuk memaksimalkan fungsi dan proses perpindahan tersebut, operator alat berat (RTG dan crane), harus dilakukan training untuk memaksimalkan kinerja operator tersebut.

Adapun beberapa saran yang dapat digunakan untuk menambah kontribusi dibidang akademik maupun rekomendasi terhadap manajemen perusahaan:

 Model distribusi pelabuhan menggunakan metode agent based dapat dikembangkan lebih detail terhadap masing-masing perilaku dari agen yang berada didalamnya. Sebagai contoh, untuk penerapan algoritma bongkar muat, dapat dilakukan simulasi lebih detail bagaimana operator pelabuhan meng-

- operasikan alat pelabuhan ketika memindahkan kontainer.
- 2. Untuk peran dari agen kapal, dapat dilakukan pengembangan untuk perilaku kapal ketika kapal berlayar, melakukan proses labuh dan tambat didalam pelabuhan. Selain daripada itu, dapat juga dimodelkan prediksi cuaca yang menjadi salah satu penyebab terlambatnya kapal datang kedalam pelabuhan sebagai bahan masukan terhadap penelitian selanjutnya.

5. DAFTAR RUJUKAN

- Andi Hasad, Verifikasi dan Validasi Dalam Simulasi Model, Sekolah pascasarjana IPB, Departemen Ilmu Komputer, 2009.
- Ahmed, Muaz. 2011. Towards a Novel Unified Framework for Developing Formal, Network and Validated Agent-Based Simulation Models of Complex Adaptive Sistem. Thesis, University of Stirling, Scontland UK
- Dong-Ping Song, Jing-Xin Dong, Cargo routing and empty container repositioning in multiple shipping service routes, Transportation Research Part B: Methodological, Volume 46, Issue 10, December 2012, Pages 1556-1575, ISSN 0191-2615, 10.1016/j.trb. 2012.08.003.
- Jasmine Siu Lee Lam, Wei Yim Yap, Dynamics of liner shipping network and port connectivity in supply chain sistems: analysis on East Asia, Journal of Transport Geography, Volume 19, Issue 6, November 2011, Pages 1272-1281, ISSN 0966-6923, 10.1016/j.j trangeo.2011.06.007.
- Lukas A. Wehinger, Agent-based modelling in electricity markets: Introducing a new predictive agent learniung approach.
 Thesis, Departmen ETH:EEH-Power Sistem Laboratory, Department CMU: ECE Electrical and Computer Engineering, Eidhegenossische Technische Hochschule Zurich.November, 2010.
- Miftakhol, Arifin. 2008. Simulasi Sistem Industri/ Graha Ilmu, 978-979-756-455-1
- Yann Alix, Brian Slack, Claude Comtois, Alliance or acquisition? Strategies for growth in the container shipping industry, the case of CP ships, Journal of Transport Geography, Volume 7, Issue 3, September 1999, Pages 203-208, ISSN 0966-6923, 10.1016/S0966-6923(98)00048-9.

Lampiran

Tabel 4. Hasil verifikasi RTG sebagai agen

	DE C	_		Koordinat RTG lidalam simulasi		Menit
NO	RTG	yard	Koordinat X	Koordinat Y	Aksi	ke
1	root.rtgs[0]	Tidak ada request	400	-480	RTG 1 posisi parkir	127.5346
2	root.rtgs[1]	yard3	651.5821	-495.876	RTG 2 melakukan proses muat	11221.27
3	root.rtgs[1]	yard3	945.3145	-491.787	RTG 2 melakukan proses muat	11285.2
4	root.rtgs[1]	yard3	714.888	-494.838	RTG 2 melakukan proses muat	11349
5	root.rtgs[1]	yard3	763.3623	-494.043	RTG 2 melakukan proses muat	11412.36
6	root.rtgs[0]	yard2	691.5008	-484.779	RTG 1 melakukan proses bongkar	76214.37
7	root.rtgs[0]	yard2	380.6534	-479.629	RTG 1 melakukan proses bongkar	76395.46
8	root.rtgs[0]	yard2	380.6534	-479.629	RTG 1 melakukan proses bongkar	77739
9	root.rtgs[0]	yard1	675.4036	-484.515	RTG 1 melakukan proses muat	77298.84
10	root.rtgs[1]	yard3	827.4175	-494.683	RTG 2 melakukan proses bongkar	78885.92
11	root.rtgs[1]	yard3	766.0937	-496.536	RTG 2 melakukan proses muat	79949.51
12	root.rtgs[0]	Tidak ada request	400	-480	RTG 1 posisi parkir	123007.9
13	root.rtgs[1]	Tidak ada request	400	-500	RTG 2 posisi parkir	132401.8

Tabel 5. Hasil verifikasi kontainer sebagai agen

No	Kontainer	RTG	Waktu Kedatangan (menit)
1	root.Containers[0]	root.rtgs[0]	126.01
2	root.Containers[1]	root.rtgs[1]	126.01
3	root.Containers[2]	root.rtgs[1]	146.21
4	root.Containers[6]	root.rtgs[1]	174.04
5	root.Containers[5]	root.rtgs[1]	186.24
6	root.Containers[3]	root.rtgs[0]	234.04
7	root.Containers[4]	root.rtgs[1]	250
8	root.Containers[11]	root.rtgs[1]	320.03
9	root.Containers[10]	root.rtgs[1]	330.37
10	root.Containers[12]	root.rtgs[0]	339.22
11	root.Containers[9]	root.rtgs[1]	393.24
12	root.Containers[8]	root.rtgs[0]	402.62
13	root.Containers[7]	root.rtgs[1]	409.13
14	root.Containers[18]	root.rtgs[0]	447.95
15	root.Containers[17]	root.rtgs[1]	479.56
16	root.Containers[16]	root.rtgs[0]	511.87

Tabel 6. Hasil verifikasi truk sebagai agen ketika menuju RTG

m 1 W 4.		Posisi Truk da	alam Simulasi	DEC E	3.5. 1/. 1
Truk	Kontainer	Koordinat X	Koordinat Y	RTG Tujuan	Menit ke
root.trucks[1]	root.Containers[2858]	310	-220	root.rtgs[1]	1081.926
root.trucks[3]	root.Containers[2309]	400	-480	root.rtgs[1]	1116.136
root.trucks[3]	root.Containers[168]	310	-220	root.rtgs[0]	1166.987
root.trucks[1]	root.Containers[2387]	310	-220	root.rtgs[1]	2053.16
root.trucks[3]	root.Containers[807]	400	-480	root.rtgs[0]	2085.115
root.trucks[1]	root.Containers[3117]	310	-220	root.rtgs[0]	2141.12
root.trucks[1]	root.Containers[1824]	214.6405	-474.738	root.rtgs[1]	2170.944
root.trucks[2]	root.Containers[3679]	310	-220	root.rtgs[1]	2223.167
root.trucks[1]	root.Containers[2359]	400	-480	root.rtgs[0]	2257.367
root.trucks[3]	root.Containers[3563]	728.4866	-485.385	root.rtgs[1]	2295.056
root.trucks[0]	root.Containers[3258]	310	-220	root.rtgs[0]	2497.001
root.trucks[4]	root.Containers[3654]	400	-480	root.rtgs[1]	2526.721
root.trucks[0]	root.Containers[1865]	310	-220	root.rtgs[0]	2588.488
root.trucks[1]	root.Containers[630]	251.5866	-475.436	root.rtgs[1]	2623.804
root.trucks[0]	root.Containers[2271]	310	-220	root.rtgs[0]	2691.131
root.trucks[2]	root.Containers[3122]	310	-220	root.rtgs[0]	2764.645
root.trucks[4]	root.Containers[1610]	310	-220	root.rtgs[0]	2840.013
root.trucks[0]	root.Containers[2980]	578.6689	-429.133	root.rtgs[1]	2897.019
root.trucks[1]	root.Containers[2726]	310	-220	root.rtgs[1]	2956.669
root.trucks[0]	root.Containers[2270]	157.5907	-509.696	root.rtgs[0]	2995.961
root.trucks[0]	root.Containers[3453]	550.3976	-500.561	root.rtgs[1]	3036.991
root.trucks[3]	root.Containers[381]	310	-220	root.rtgs[0]	3080.232
root.trucks[3]	root.Containers[304]	153.7414	-509.85	root.rtgs[1]	3120.467
root.trucks[2]	root.Containers[2845]	310	-220	root.rtgs[0]	3161.233

Tabel 7. Hasil verifikasi truk sebagai agen ketika menuju crane

Tanala	Kontainer	Posisi truk da	alam simulasi	Crons Tuinen	Monit lea
Truk	Kontainer	Koordinat X	Koordinat Y	Crane Tujuan	Menit ke
root.trucks[4]	root.Containers[3251]	360	-220	root.cranes[2]	1132.1
root.trucks[4]	root.Containers[3128]	360	-220	root.cranes[1]	1170.652
root.trucks[4]	root.Containers[2895]	330	-510	root.cranes[2]	2529.603
root.trucks[4]	root.Containers[2939]	360	-220	root.cranes[0]	2567.534
root.trucks[4]	root.Containers[2290]	943.9619	-497.051	root.cranes[0]	2636.992
root.trucks[4]	root.Containers[1336]	407.7447	-500.062	root.cranes[2]	2692.321
root.trucks[4]	root.Containers[115]	73.17734	-507.545	root.cranes[2]	2732.088
root.trucks[4]	root.Containers[1245]	360	-220	root.cranes[2]	2782.301
root.trucks[4]	root.Containers[8]	400	-480	root.cranes[2]	2825.811
root.trucks[4]	root.Containers[1761]	687.7451	-484.717	root.cranes[2]	2859.16
root.trucks[4]	root.Containers[714]	400	-480	root.cranes[1]	2891.808
root.trucks[4]	root.Containers[3203]	360	-220	root.cranes[0]	2956.405
root.trucks[4]	root.Containers[619]	360	-220	root.cranes[1]	2991.725

root.trucks[4]	root.Containers[1501]	360	-220	root.cranes[0]	3016.171
root.trucks[4]	root.Containers[2601]	400	-480	root.cranes[1]	3146.405
root.trucks[4]	root.Containers[85]	255.2756	-475.719	root.cranes[2]	3167.338
root.trucks[4]	root.Containers[1389]	8.033185	-470.632	root.cranes[0]	3196.432
root.trucks[4]	root.Containers[1874]	360	-220	root.cranes[0]	3254.738
root.trucks[4]	root.Containers[3122]	246.222	-477.479	root.cranes[2]	3290.057
root.trucks[4]	root.Containers[3899]	-38.1758	-472.817	root.cranes[1]	3324.159
root.trucks[4]	root.Containers[743]	360	-220	root.cranes[2]	3373.023
root.trucks[4]	root.Containers[932]	360	-220	root.cranes[0]	3391.33
root.trucks[4]	root.Containers[2606]	360	-220	root.cranes[0]	3397.932
root.trucks[4]	root.Containers[916]	400	-480	root.cranes[2]	3431.079

Tabel 8. Hasil verifikasi terhadap agen crane

No	Crane	Container	Waktu (menit)
1	root.cranes[1]	root.Containers[403]	814.6439
2	root.cranes[0]	root.Containers[2924]	825.9813
3	root.cranes[1]	root.Containers[2867]	843.3527
4	root.cranes[2]	root.Containers[1458]	895.9167
5	root.cranes[0]	root.Containers[639]	917.6521
6	root.cranes[2]	root.Containers[3415]	933.7261
7	root.cranes[0]	root.Containers[2677]	956.3748
8	root.cranes[0]	root.Containers[3537]	983.6956
9	root.cranes[1]	root.Containers[1073]	1002.488
10	root.cranes[2]	root.Containers[1302]	1020.854
11	root.cranes[1]	root.Containers[1499]	1028.996
12	root.cranes[0]	root.Containers[2315]	1072.388
13	root.cranes[2]	root.Containers[2025]	1075.968

Tabel 9. Hasil verifikasi terhadap agen ship

No	Ship	Waktu kedatagan (menit)	Waktu kepergian (menit)
1	root.ships[1]	490	740
2	root.ships[0]	1042	1203
3	root.ships[1]	1387	1645
4	root.ships[0]	1876	2301
5	root.ships[0]	2587	2786
6	root.ships[0]	3013	3241
7	root.ships[1]	3542	3654
8	root.ships[0]	3812	4132

Tabel 10. Hasil verifikasi terhadap proses muat kontainer

No	RTG	Yard	Container	Posisi	Jadwal Bongkar (menit)
1	root.rtgs[0]	Yard 1	root.Containers[0]	[0][0][0]	495.9516
2	root.rtgs[1]	Yard 1	root.Containers[1]	[0][1][0]	554.1392
3	root.rtgs[0]	Yard 1	root.Containers[2]	[0][2][0]	944.6804

4	root.rtgs[1]	Yard 3	root.Containers[3]	[0][3][0]	1805.265
5	root.rtgs[0]	Yard 1	root.Containers[4]	[0][0][0]	888.8833
6	root.rtgs[1]	Yard 3	root.Containers[5]	[0][0][0]	1002.706
7	root.rtgs[0]	Yard 1	root.Containers[6]	[0][2][0]	498.0833
8	root.rtgs[1]	Yard 3	root.Containers[7]	[0][3][0]	1064.406
9	root.rtgs[1]	Yard 4	root.Containers[8]	[0][4][0]	1374.985
10	root.rtgs[1]	Yard 4	root.Containers[9]	[1][0][0]	614.6424
11	root.rtgs[0]	Yard 2	root.Containers[10]	[1][1][0]	572.3298
12	root.rtgs[1]	Yard 4	root.Containers[11]	[1][2][0]	554.9019
13	root.rtgs[0]	Yard 2	root.Containers[12]	[1][3][0]	642.9277
14	root.rtgs[1]	Yard 3	root.Containers[13]	[1][4][0]	588.3651
15	root.rtgs[0]	Yard 1	root.Containers[14]	[2][0][0]	461.6323
16	root.rtgs[1]	Yard 4	root.Containers[15]	[2][1][0]	1171.417
17	root.rtgs[1]	Yard 4	root.Containers[16]	[2][2][0]	945.7772
18	root.rtgs[1]	Yard 4	root.Containers[17]	[2][3][0]	901.6046
19	root.rtgs[0]	Yard 1	root.Containers[18]	[2][4][0]	690.3489

Tabel 11. Hasil verifikasi terhadap proses bongkar kontainer

No	RTG	Yard	Container	posisi	Waktu di bongkar (menit)
1	root.rtgs[1]	Yard 3	root.Containers[1]	[0][0][0]	1088.106
2	root.rtgs[0]	Yard 3	root.Containers[0]	[0][0][1]	1088.106
3	root.rtgs[0]	Yard 3	root.Containers[5]	[0][0][2]	1088.106
4	root.rtgs[1]	Yard 3	root.Containers[3]	[0][0][0]	1152.37
5	root.rtgs[1]	Yard 4	root.Containers[7]	[0][0][1]	1152.37
6	root.rtgs[0]	Yard 2	root.Containers[17]	[0][0][3]	1152.37
7	root.rtgs[1]	Yard 4	root.Containers[27]	[11][1][0]	1162.619
8	root.rtgs[1]	Yard 3	root.Containers[4]	[0][0][3]	1232.126
9	root.rtgs[1]	Yard 3	root.Containers[1]	[0][1][0]	1232.126
10	root.rtgs[1]	Yard 4	root.Containers[0]	[0][1][1]	1232.126
11	root.rtgs[1]	Yard 4	root.Containers[5]	[0][1][2]	1232.126
12	root.rtgs[1]	Yard 3	root.Containers[33]	[0][0][0]	2497.132
13	root.rtgs[1]	Yard 4	root.Containers[31]	[0][0][1]	2497.132
14	root.rtgs[0]	Yard 1	root.Containers[38]	[0][0][2]	2497.132
15	root.rtgs[0]	Yard 1	root.Containers[36]	[0][0][3]	2497.132
16	root.rtgs[0]	Yard 1	root.Containers[33]	[0][1][0]	2499.383
17	root.rtgs[0]	Yard 1	root.Containers[31]	[0][1][1]	2499.383
18	root.rtgs[1]	Yard 3	root.Containers[38]	[0][1][2]	2499.383
19	root.rtgs[1]	Yard 4	root.Containers[4]	[0][1][3]	2499.383

Tabel 12. Detail dari skenario yang dilakukan

No	Skenario	Pengurangan waktu kerja RTG	Pengurangan waktu kerja Crane	Periode Perawatan (hari)	ketelatan kapal
1	Skenario 1	Normal	5%	-	-
2	Skenario 2	Normal	105	-	-
3	Skenario 3	Normal	15%	-	-

4	Skenario 4	Normal	30%	-	-
5	Skenario 5	5%	Normal	-	-
6	Skenario 6	105	Normal	-	-
7	Skenario 7	15%	Normal	-	-
8	Skenario 8	30%	Normal	-	-
9	Skenario 9	5%	5%	-	-
10	Skenario 10	5%	10%	-	-
11	Skenario 11	5%	15%	-	-
12	Skenario 12	5%	30%	-	-
13	Skenario 13	10%	15%	-	-
14	Skenario 14	10%	10%	-	-
15	Skenario 15	10%	15%	-	-
16	Skenario 16	10%	30%	-	-
17	Skenario 17	15%	5%	-	-
18	Skenario 18	15%	10%	-	-
19	Skenario 19	15%	15%	-	-
20	Skenario 20	15%	30%	-	-
21	Skenario 21	30%	5%	- 1	-
22	Skenario 22	30%	10%		-
23	Skenario 23	30%	15%	-	-
24	Skenario 24	30%	30%	-	-
25	Skenario 25	5%	5%	15 hari	1 jam
26	Skenario 26	5%	10%	15 hari	1 jam
27	Skenario 27	5%	15%	15 hari	1 jam
28	Skenario 28	15%	30%	15 hari	1 jam
29	Skenario 29	15%	5%	15 hari	1 jam
30	Skenario 30	15%	10%	15 hari	1 jam
31	Skenario 31	30%	15%	15 hari	1 jam
32	Skenario 32	30%	30%	15 hari	1 jam
33	Skenario 33	30%	5%	15 hari	1 jam
34	Skenario 34	5%	10%	15 hari	2 jam
35	Skenario 35	5%	15%	15 hari	2 jam
36	Skenario 36	5%	30%	15 hari	2 jam
37	Skenario 37	15%	5%	15 hari	2 jam
38	Skenario 38	15%	10%	15 hari	2 jam
39	Skenario 39	15%	15%	15 hari	2 jam
40	Skenario 40	30%	30%	15 hari	2 jam
41	Skenario 41	30%	5%	15 hari	2 jam
42	Skenario 42	30%	10%	15 hari	2 jam
43	Skenario 43	5%	15%	15 hari	>2 Jam
44	Skenario 44	5%	30%	15 hari	>2 Jam
45	Skenario 45	5%	5%	15 hari	>2 Jam
46	Skenario 46	15%	10%	15 hari	>2 Jam
47	Skenario 47	15%	15%	15 hari	>2 Jam
48	Skenario 48	15%	30%	15 hari	>2 Jam
49	Skenario 49	30%	5%	15 hari	>2 Jam

50	Skenario 50	30%	10%	15 hari	>2 Jam
51	Skenario 51	30%	15%	15 hari	>2 Jam
52	Skenario 52	5%	30%	30 hari	1 Jam
53	Skenario 53	5%	5%	30 hari	1 Jam
54	Skenario 54	5%	10%	30 hari	1 Jam
55	Skenario 55	15%	15%	30 hari	1 Jam
56	Skenario 56	15%	30%	30 hari	1 Jam
57	Skenario 57	15%	5%	30 hari	1 Jam
58	Skenario 58	30%	10%	30 hari	1 Jam
59	Skenario 59	30%	15%	30 hari	1 Jam
60	Skenario 60	30%	30%	30 hari	1 Jam
61	Skenario 61	5%	5%	30 hari	2 Jam
62	Skenario 62	5%	10%	30 hari	2 Jam
63	Skenario 63	5%	15%	30 hari	2 Jam
64	Skenario 64	15%	30%	30 hari	2 Jam
65	Skenario 65	15%	5%	30 hari	2 Jam
66	Skenario 66	15%	10%	30 hari	2 Jam
67	Skenario 67	30%	15%	30 hari	2 Jam
68	Skenario 68	30%	30%	30 hari	2 Jam
69	Skenario 69	30%	5%	30 hari	2 Jam
70	Skenario 70	5%	10%	30 hari	> 2 Jam
71	Skenario 71	5%	15%	30 hari	> 2 Jam
72	Skenario 72	5%	30%	30 hari	> 2 Jam
73	Skenario 73	15%	5%	30 hari	> 2 Jam
74	Skenario 74	15%	10%	30 hari	> 2 Jam
75	Skenario 75	15%	15%	30 hari	> 2 Jam
76	Skenario 76	30%	30%	30 hari	> 2 Jam
77	Skenario 77	30%	15%	30 hari	> 2 Jam
78	Skenario 78	30%	30%	30 hari	> 2 Jam

Tabel 13. Rata-rata perbandingan waktu layanan kapal dipelabuhan tanpa faktor perawatan dan keterlambatan kedatangan kapal

Scenario	Average Ship Service Time (minute)
Skenario 1	606.35
Skenario 2	733.05
Skenario 3	554.39
Skenario 4	630.18
Skenario 5	787.31
Skenario 6	714.35
Skenario 7	736.66
Skenario 8	854.6
Skenario 9	669.68
Skenario 10	684.17
Skenario 11	787.9
Skenario 12	857.41

Skenario 13	733.25
Skenario 14	687.42
Skenario 15	629.27
Skenario 16	786.84
Skenario 17	677.55
Skenario 18	647.68
Skenario 19	577.89
Skenario 20	679.71
Skenario 21	728.47
Skenario 22	709.81
Skenario 23	759.75
Skenario 24	741.02

Tabel 14. Jumlah waktu layanan RTG dan Crane di pelabuhan

Jumlah Waktu layanan RTG dan Crane Berdasarkan waktu (Satuan: Jumlah)

	Lebih kecil dari 2		Antara	Antara 2 dan 3		Besar dari 3		
Skenario	RTG	Crane	RTG	Crane	RTG	Crane		
Skenario 1	905	993	1044	616	141	481		
Skenario 2	953	1033	1001	344	136	466		
Skenario 3	692	801	846	519	132	350		
Skenario 4	1013	890	606	1034	470	165		
Skenario 5	943	1004	973	626	173	459		
Skenario 6	939	945	643	992	507	152		
Skenario 7	894	1017	1055	612	140	460		
Skenario 8	1972	2245	2304	1336	317	1011		
Skenario 9	882	997	1053	654	154	438		
Skenario 10	911	1003	1002	625	176	461		
Skenario 11	1799	1920	1518	987	281	933		
Skenario 12	894	951	759	455	135	496		
Skenario 13	1092	1265	889	674	203	591		
Skenario 14	899	1003	749	540	150	463		
Skenario 15	870	973	689	516	181	457		
Skenario 16	39	44	33	21	6	23		
Skenario 17	1795	1991	1470	1118	325	873		
Skenario 18	888	995	711	563	177	432		
Skenario 19	900	991	750	526	150	465		
Skenario 20	871	1010	717	565	154	445		
Skenario 21	900	1029	752	580	148	449		
Skenario 22	2498	2834	2043	1548	455	1286		
Skenario 23	1780	2027	1474	1118	306	909		
Skenario 24	909	1037	769	603	140	434		

Tabel 15. Hasil skenario dengan menerapkan nilai perawatan RTG dan crane beserta keterlambatan kedatangan kapal

Vota						Hasil skenario		
Kate- gori		Keterangan				Ship service	RTG Request	
	Maintenance 15 day	Ship late 1 hour	RTG 5%	Crane 5%	Min	556.09	3467	
	Maintenance 15 day	Ship late 1 hour	RTG 5%	Crane 15%	Max	821.88	3997	
	Maintenance 15 day	Ship late 1 hour	RTG 5%	Crane 30%				
	Maintenance 15 day	Ship late 1 hour	RTG 15%	Crane 5%				
1	Maintenance 15 day	Ship late 1 hour	RTG 15%	Crane 15%				
	Maintenance 15 day	Ship late 1 hour	RTG 15%	Crane 30%				
	Maintenance 15 day	Ship late 1 hour	RTG 30%	Crane 5%				
	Maintenance 15 day	Ship late 1 hour	RTG 30%	Crane 15%				
	Maintenance 15 day	Ship late 1 hour	RTG30%	Crane 30%				
	Maintenance 15 day	ship late 2 hours	RTG 5%	Crane 5%	Min	670.88	3993	
	Maintenance 15 day	ship late 2 hours	RTG 5%	Crane 15%	Max	899.72	4521	
	Maintenance 15 day	ship late 2 hours	RTG 5%	Crane 30%				
	Maintenance 15 day	ship late 2 hours	RTG 15%	Crane 5%				
2	Maintenance 15 day	ship late 2 hours	RTG 15%	Crane 15%				
	Maintenance 15 day	ship late 2 hours	RTG 15%	Crane 30%				
	Maintenance 15 day	ship late 2 hours	RTG 30%	Crane 5%				
	Maintenance 15 day	ship late 2 hours	RTG 30%	Crane 15%				
	Maintenance 15 day	ship late 2 hour	RTG30%	Crane 30%				
	Maintenance 15 day	ship late > 2 hours	RTG 5%	Crane 5%	Min	611.78	4231	
	Maintenance 15 day	ship late > 2 hours	RTG 5%	Crane 15%	Max	860.23	4453	
	Maintenance 15 day	ship late > 2 hours	RTG 5%	Crane 30%				
	Maintenance 15 day	ship late > 2 hours	RTG 15%	Crane 5%				
3	Maintenance 15 day	ship late > 2 hours	RTG 15%	Crane 15%				
	Maintenance 15 day	ship late > 2 hours	RTG 15%	Crane 30%				
	Maintenance 15 day	ship late > 2 hours	RTG 30%	Crane 5%				
	Maintenance 15 day	ship late > 2 hours	RTG 30%	Crane 15%				
	Maintenance 15 day	ship late > 2 hour	RTG30%	Crane 30%	7			
	Maintenance 30 day	Ship late 1 hours	RTG 5%	Crane 5%	Min	553.87	4534	
	Maintenance 30 day	Ship late 1 hours	RTG 5%	Crane 15%	Max	821.86	4675	
	Maintenance 30 day	Ship late 1 hours	RTG 5%	Crane 30%				
	Maintenance 30 day	Ship late 1 hours	RTG 15%	Crane 5%				
4	Maintenance 30 day	Ship late 1 hours	RTG 15%	Crane 15%				
	Maintenance 30 day	Ship late 1 hours	RTG 15%	Crane 30%				
	Maintenance 30 day	Ship late 1 hours	RTG 30%	Crane 5%				
	Maintenance 30 day	Ship late 1 hours	RTG 30%	Crane 15%				
	Maintenance 30 day	Ship late 1 hours	RTG30%	Crane 30%				
	Maintenance 30 day	ship late 2 hours	RTG 5%	Crane 5%	Min	542.3	4627	
5	Maintenance 30 day	ship late 2 hours	RTG 5%	Crane 15%	Max	781.85	4785	

4572
5235