SOFTWARE TESTING TECHNIQUES AND STRATEGIES
USE IN NOVICE SOFTWARE TEAMS

Egia Rosi Subhiyakto?, Danang Wahyu Utomo?
2 Department of Informatics Engineering, Computer Science, Universitas Dian Nuswantoro
Jalan Nakula I, No. 5-11, Semarang 50131, Indonesia
Telp : (024) 3517261, Fax : (024) 3569684
E-mail : egia@dsn.dinus.ac.id"

Abstract

Software testing is one of the stages in the life cycle of software development. Novice software developers
typically perform software testing improperly. The aims of this study are to know the strategies and to get
proper testing techniques that are used in black and white box, along with the enabler and inhibitor.
There are 76 novice software developers involved in this study as software testers. Finally the results
show that the top down strategy (93%) is more popular than bottom up (7%) in terms of testing strategy.
Meanwhile in testing technique graph based and basis path are the most popular techniques in black box
and white box respectively.

Abstrak

Pengujian perangkat lunak merupakan salah satu tahapan dalam siklus hidup pembangunan perangkat
lunak. Pengembang perangkat lunak pemula biasanya melakukan proses pengujian perangkat lunak tidak
secara tepat. Penelitian ini memiliki tujuan mengetahui strategi dan teknik pengujian yang tepat baik
black box maupun white box, beserta faktor-faktor pendukung dan penghambat. Terdapat 76
pengembang perangkat lunak pemula yang terlibat dalam studi ini sebagai penguji perangkat lunak.
Berdasarkan hasil studi menunjukan strategi top down (93%) lebih populer daripada strategi bottom up
(7%) dalam hal strategi pengujian. Sementara dalam teknik pengujian, graph based dan basis path
merupakan teknik yang paling populer masing-masing dalam black box dan white box.

Kata kunci: Perangkat Lunak, Pengujian, Strategi, Teknik, Pemula

1. INTRODUCTION desired [3]. Pham et al in the [4] stated that the
main problem in software development is the

There are many phases in software engineering lack of experience in testing students.

such as requirement engineering, analysis,
design, implementation, testing, maintenance
and retirement. In the [1] presented that
students need to acquire the knowledge and
skills of software engineering that cover all of
the software development phases to be a
competent software developers. Software
testing is neither complex nor difficult to
implement, yet it is a discipline that is seldom
applied to anything approaching the necessary
rigor to provide confidence in delivering
software [2]. Testing software is not able to
ensure the quality of the software, but can
provide confidence and assurance of software to
a certain extent. There are several reasons,
including the increasing complexity, increasing
market pressures and customer demands for
higher quality requires a combination of
carefully selected, validated, and verification to
provide a software product on time, within
budget, and according to quality which are

2. RESEARCH BACKGROUND

Testing stages are one step in the development
of a software. Stages of testing become very
important because it is the final stage in
determining the quality of software that is built
or developed. Related to quality assurance
would require detailed and specific things in the
process. Especially for a team of software
developers, beginners become very urgent
because at this stage they learn to identify
factors that support or impede the process of
software testing. Determine the testing strategy
has also become very important because if one
in determining the proper technique, the testing
will be time-consuming and a big expense.

3. LITERATURE REVIEW

In this section discuss about literature review
that related to software testing, software testing

556

Jurnal Sistem Informasi, Volume 5, Nomor 5, Maret 2016, hlm 556-562

for novice and software testing method and
tools.

3.1 Software Testing

Software testing is a testing method that used to
determine quality of software which is, it should
be satisfied with the requirement. Testing
method such as automatic testing, unit testing,
and regression testing have different type to test
the quality of software and process
development. Software testing is an important
part of the software development lifecycle [5].
Other researches state that software testing is a
practice and study to assess and improve quality
of software [6]. Based on previous research,
software testing is an effective way to determine
software quality. Practitioners, researchers, or
developers use it to revealing faults of the
program. Lemos in the [7] state that software
testing is program execution using test case to
find fault of program. Testing technique
revealing faults based on a test case, for
example test case on white box and black box.
In white box testing derives test case for
implementation. The way to revealing fault is
check whether the output is appropriate with
designing output. In black box testing derives
test case from the description of the program
structure. It checks complexity of the program
through source code, usually use Cyclomatic
complexity (quantitative measurement through
source code).

In software engineering education, software
testing practice can be used to improve
student’s ability when applies their knowledge
in software development. Pham in the [8] state
that main problem in software development is
low experience of testing skills. Student have
trouble to apply basic testing technique or
method. In software project development,
student misunderstanding with others when
applying basic testing concept and avoid their
project. Utomo in the [9] state that
misunderstanding can be caused by a lack of
communication between student in a group
project. Low experience and misunderstanding
is a factor of software engineering failure.

3.2 Software Testing for Novices

The student should understand how to adopt
testing techniques, reduce barriers, and improve
communication when testing process is done.
Lee in the [10] state that software testing
practice have problems in applying the method
and tool. For instructors, need to pay attention
ability of student, behavior, limitation, and
requirement of the method and tool. The
instructor also focuses on the testing process
and activity to evaluate progress of student

557

work. Understandability of study aims to
determine the appropriate method and tool that
used in software testing with development
model has been proposed. Result of student’s
progress can be used to improve knowledge of
student when applying basic testing concept in
software development. The instructor can
analyze progress reports to know whether
student improve their ability, reduce barriers
during the testing process, and improve
communication between groups.

Inexperience of software testing can be problem
in software development. Basically, software
testing is an important part of a development
model. Pham in the [8] state that obstacles and
constraints of software development is lack of
experience in software testing practice. Studies
as developer have trouble applying testing
method and tool. The main problem is how to
apply a method and tool in many testing
techniques. In this case, the student needs
guidance to learn methods and tool and reduce
misunderstanding of basic concepts with others.
Teacher as instructor need to provide additional
class give guidance about method and tool
based on software testing technique. In addition
to, the teacher can monitor their student during
practice is done.

Itkonen and Lassenius in the [11] use the
knowledge and experience to understand the
failure of the testing process. It can be used to
evaluate the failure of student testing practice.
The evaluation, based on personal knowledge of
the student and their progress report on testing
practice. The experience not only used to
evaluate the ability of the student, but also to
know the behavior of the testing method. It
means that students with experience can easily
determine what is the method and tool use in
software testing practice. For example,
experience using test case on regression testing
and automatic testing. The tester should be able
to determine domain in the method. Test cases
must be in accordance with the proposed testing
method.

3.3 Software Testing Method and Tool

Method and tool is aimed to support improved
quality of software. Lee in the [10] state that
method and tool can improve software testing
practices in term of the use of the method and
tool, the barrier in software testing practice.
Software testing methods are concepts,
techniques consist of rules and steps of software
testing tasks, for example black box and white
box is technique for test design. In test design, it
used to test the application that related to design
such as Cyclomatic complexity, interface, input

Subhiyakto E. R., dkk., Software Testing Technique And Strategies Use In Novice Software Teams

and output of the system. Software testing tools
are tools or software products included testing
method to support software testing tasks. In
software testing practices, software testing tools
assist students to apply their knowledge and
experience. A student can practice what they
learned in theoretic class. Theoretically, it can
help the student to improve their ability
coverage knowledge and experience, but in
practice, student avoids testing tools because
they should learn first the tools before applying
the method. The instructor should guide student
how to use the tool, how to apply the testing
method in the tool. In addition to, the institution
should provide a cost to buy the tool. Lee in the
[10] state that the usage of software testing tool
is lower than the usage of software testing
method because the high complexity and
difficult to use. Melo state that there is no
methodology to analyze and select a testing tool
based on the requirement has been designed.
Furthermore, there is no literature that focuses
on testing tools. It is one of factor software
testing tool rarely used in software testing
practices [12].

Other factors that influence software testing
practice are the usage of questionnaire and
interview. The questionnaire used to find the
weakness of software, characteristics of
personal, experience of the user, and testing
domain included method and tool. For novice
team, the questionnaire is a low-cost tool to
practice and apply testing method. Student only
prepares some question related the topic of
testing, give it to the user that related with the
system and the last, analyze the result. Interview
used to find the influence of software testing
based on perception and opinion of users. The
interview is important for novice teams to
improve communication skill with stakeholder.
Different with a questionnaire, in the interview
conducted like a conversation, tester asks
directly to the stakeholder. The opportunity of
the interview is tester know what the user really
want the system, what the weakness of the
system.

4. RESEARCH METHOD

The research method used in this study is the
survey method. This method performs the
survey process by distributing questionnaires to
a novice software teams. There is 19 software
that used for testing, consist of 16 web
application, 2 mobile application, and 1 desktop
application. All of the teams conduct the testing
along two weeks, and they are conducting the
testing based on the software that they build.
After that, they fill the questionnaire to evaluate
testing stage.

558

The questionnaires were measured using Likert
scale [5 points], where “1” for strongly
disagree, “2” for disagree, 3 for undecided, “4”
for agree, and “5” for strongly agree”. In the
table 1 present the survey questionnaire that
consists of three part namely system metrics,
process metrics, and usability.

Table 1. Survey Questionnaires

No Statement

1 System Responsive

2 Size of system is big

3 System has a good performance

4 System efficient

5 Has done the maximum effort in testing
6 Use the time provided with maximum

7 Total defect in the software is very much
8 Interesting interface

9 Easy to use

10 Easy to understand
11 User Interface
12 Functionality

Table 2. Questionnaires
techniques

testing strategies and

Testing Strategies

1. Top Down
2. Bottom Up

Testing Techniques

1. Black Box
a. Graph Based Testing
b. Equivalence Partitioning
c¢. Boundary Value Analysis

2. White Box
a. Basis Path Testing
b. Graph Matrix
c. Control Structure Testing
d. Data Flow Testing
e. Lines of Code

In the other hand, survey questionnaire also
provides testing strategies, testing techniques,
enabler and inhibitor in the testing of software.
In the table 2 presented about that. For testing
strategies and technique every student can
choose 1 to complete the questionnaire based on
the testing software. Top down strategy is a
software testing strategy that tests the software
from the largest to the smallest parts in the
software (module) while the bottom-up strategy
is a software testing strategy that tests the
software from the smallest to the largest part.
Besides, for enabler and inhibitor students can
fill minimum 3 factors that enable or inhibit in
the testing software. Results of the
questionnaire will be analyzed in next section to
ascertain the validity of the study.

Jurnal Sistem Informasi, Volume 5, Nomor 5, Maret 2016, hlm 556-562

5. TESTING PRACTICES AND answer each question, Q is a number of
PREFERENCES respondents and Y is a percentage value.
A general overview of respondent Table 4. Evaluation result for system metric, process
demographics for the complete survey is metric, usability, user satisfaction
presented in table 3. Number of Respondents
System Metrics SA A U D SD
Table 3. Respondent demographic System Responsive 16 35 10 13 2
Gender Size of systemislarge 7 7 19 34 9
Male 74 Good performance 7 22 16 25 6
Female 2 System efficient 6 23 6 37 4
Semester Process Metrics SA A U D SD
5 7 Maximum effort 23 48 2 3 0
7 60 Use the time maximum 17 47 5 7 0
9-above 9 Total defect 17 27 13 18 1
Team Size Usability SA A U D SD
I am not in the team 2 Interesting interface 9 26 17 22 2
1-2 people 9 Easy to use 11 36 8 19 2
3-4 people 5 Easy to understand 12 24 12 25 3
5-6 people 5 User Satisfaction SA° A U D SD
Cost User Interface 8 26 16 23 3
Rp. 0-500.000 14 Functionality 7 14 20 32 3
Rp. 500.000-1.000.000 4
Rp. >1.000.000 1 Based on figure 1 below can be concluded in
Schedule system metrics for each parts with system
< 1 month 9 responsive (67% strongly agree and agree), the
2-3 months 6 size of the system is not too large (over 56%),
> 3 months 4 system haven’t good performance (over 40%),
and system not efficient (over 53,9%). From
In this study conducted testing software this result can be concluded in the system

involving 76 participants. Based on table 3
shows respondent consist of 7 students a third
year, 60 students fourth year, and 9 students the
fifth year and above. Then, they divided into
team size with details “I am not in the team”,
group’s 1-2 people, groups’ 3-4 people, and
groups 5-6 people. In table 3 also shows cost
and schedule development of the software

before perform the testing.

6. DATA ANALYSIS AND DISCUSSION

In this section, we carried out an evaluation
results from questionnaires that conducted.
There are 76 participants in this study consist of
74 male and 2 female. Participants in this study
consist of 7 third year software engineering
students, fourth-year software engineering
students and 9 fifth year and above software
engineering students.

Based on research method and practices and
preferences we can analyze data. This analysis
is performed on eight different aspects such as
system metric, process metric, usability, user
satisfaction, testing strategy, testing technique,
enabler, and inhibitor. Based on the questions in
the previous section can obtain percentage for
each questions using the formula: Y=P/Q *
100%, in which P is a number of respondents

559

metrics software have been tested in this study
that overall system responsive, the size of the
system is not too large, overall system haven’t
good performance, and overall system not
efficient.

System Metrics
- g
'Y e

M System Responsive M Size are big

Good Performance & System Efficient

Figure 1 System Metrics

In process metrics based on the graph below
figure 2 can be concluded that the students
overall using maximum effort to testing (over
93%), using the maximum time to testing (over
84%), and total defect in overall system reached
(over 57%).

Subhiyakto E. R., dkk., Software Testing Technique And Strategies Use In Novice Software Teams

Process Metrics

B Maximum Effort m Maximum Time

Total defect

Figure 2 Process Metrics
Usability
50.0
40.0
30.0
20.0
10.0
0.0
& & & & &
& & & S
N SRS R
&
S ‘%A
o &
BN

M Interesting Interface M Easy to use
Easy to understand

Figure 3 Usability

Usability from the overall software has been
tested based on figure 3 shows the students
interested with the software (over 46% with
strongly agree and agree with interesting
interface of the system), then for easy to use the
software students easy to operate the software in
which it shows overall software easy to use
(over 61% strongly agree and agree with easy to
use). And last for wusability is easy to
understand, in figure 3 shows have positive
results for easy to understand of the software
(over 47% with strongly agree and agree).

Evaluation for user satisfaction presented in
figure 4. The user interface from overall
software shows positive results (over 44% with
strongly agree and agree), but students feel less
satisfied with the functionality of the software
(over 46%).

560

User Satisfaction

50.0
40.0
30.0
20.0 '
10.0 -

0.0 -

< < X < (]
@ @ ¢ @ <@
N &{» & HF
S AN

& o}*

o 3

M User Interface M Functionality
Figure 4 User Satisfaction

Table 5. Evaluation result for testing strategy and
testing technique

Testing Strategy Quantity
Top Down 71
Bottom Up 5
Testing Technique

Black Box:

Graph Based Testing 63
Equivalence Partitioning 11
Boundary Value Analysis 2
White Box:

Basis Path Testing 55
Graph Matrix 7
Control Structure Testing 0
Data Flow Testing 0
Lines of Code 14

Evaluation result for testing strategy and testing
techniques presented in table 5. Based on
questionnaire results, 71 (over 93%) participants
choose strategy top down, and only 5 (around
6%) choose bottom up. It can be concluded that
participant overall chooses strategy top down
when they do testing software. Whereas for
testing techniques divide into 2 part including
black box and white box testing. In the black
box participants mostly prefer using graph
based testing techniques (63 participants or over
82%), then 11 participants (over 14%) using
equivalence partitioning, and 2 participants
(over 2%) using boundary value analysis. In the
other hand, for white box testing 55 participants
(over 72%) mostly prefer to use basis path
testing, 7 participants (over 9%) using graph
matrix and 14 participants (over 18%) using
lines of code. From this results can be
concluded that strategy top down mostly prefer
to use in this testing study, then graph based
testing technique (black box) and basis path
(white box) constitute mostly prefer technique
testing in this study.

Jurnal Sistem Informasi, Volume 5, Nomor 5, Maret 2016, hlm 556-562

Last evaluation for enabler and inhibitor are
presented in table 6 below. There are 14 factors
which became an enabler and 15 factors which
became inhibitor in doing testing. For each
factor obtained from students either before,
during or after doing testing.

Table 6. Result for enabler and inhibitor

Enabler factors Qty
Good team coordination 41
Software Compatible with Hardware 7
Simple software 15
No need for an internet connection 3
System responsive 8
Application is not using the framework 1
The system is easy to understand 12
Granted full access to the software 7
Scheduled testing time 17
Open Source Applications 1
Installing the program is easy to understand 4
Web-based applications that are familiar 4
Application completed with a module 3
The software is easy to use 7
Inhibitor Qty
The file is too large 4
A change of software 12
Complex program flows 10
Poor communication 20
Delays in software distribution 16
The software is not compatible with OS 10
Not given a note to log in 7
Use unfamiliar framework 5
The developer less cooperative 6
Internet connection is unstable 5
Inefficient User Interface 8
Too many bugs 16
Software easy to hack 4
Elusive software 10
No documentation of analysis 7

Table 6 shows the results for enabler and
inhibitor factors in this testing study. Based on
the table above shows that good team
coordination (53%) is a factor that most support
in testing, whereas poor communication is the
most hindering factor in this testing study.

7. CONCLUSION AND FUTURE WORK

There are several things that can be inferred
from this study. To measure the evaluation of
test results and feedback from the development
team wused questionnaires about systems,
processes, techniques and strategies as well as
the testing of the enablers and inhibitors in this
testing study. Based on the results of the
questionnaire, 71 respondents (93%) chose a
strategy top down and only 5 (7%) who chose a
bottom-up testing strategy. It can be concluded
that the majority of respondents prefer to do a
top-down strategy in software testing. As for the
testing, the technique is divided into two parts,
namely the technique black box testing and
white box. In the black box the majority of
respondents prefer a graph-based technique (63
respondents or 82%), and for the white box
techniques majority of respondents chose basis

561

path technique (55 respondents or 72%). From
these results, it can be concluded that for black
box testing techniques, graph-based in the black
box and basis path in the white box is more
widely used in this testing study. Meanwhile for
enabler and inhibitor, good team coordination
(53%) is a factor that most support in testing,
whereas poor communication is the most
hindering factor in this testing study. To obtain
a better result, future work should use software
with the same platform and longer testing time.

ACKNOWLEDGEMENTS

This research was supported by LPPM
Universitas Dian Nuswantoro under grant no
021/A.35-02/UDN.09/X/2015 for funding this
research.

REFERENCES

[1] E. Subhiyakto and M. Kamalrudin,
“Customization of Requirements
Modeling Tool For Software
Engineering Education,” Int. Symp. Res.
Innov. Sustain., vol. 2014, no. October
2014, pp. 1581-1584, 2014.

[2] P. Morgan, B. Hambling, A. Samaroo,
G. Thompson, and P. Williams,
Software Testing: An Istgb-Iseb
Foundation Guide. 2010.

[3] A. Aurum and C. Wohlin, Engineering
and Managing Software Requirements.
2005.

[4] R. Pham, S. Kiesling, O. Liskin, L.
Singer, and K. Schneider, “Enablers ,
Inhibitors , and Perceptions of Testing
in Novice Software Teams,” FSE 14,
no. ACM, pp. 3040, 2014.

[5] V. Garousi and J. Zhi, “A survey of
software testing practices in Canada,” J.
Syst. Softw., vol. 86, no. 5, pp. 1354—
1376, 2013.

[6] A. Orso and G. Rothermel, “Software
testing: a research travelogue (2000—
2014),” Proc. Futur. Sofiw. Eng. -
FOSE 2014, pp. 117-132, 2014.

[7] 0. A. L. Lemos, F. C. Ferrari, M. M.
Eler, J. C. Maldonado, and P. C.
Masiero, “Evaluation studies of
software testing research in Brazil and
in the world: A survey of two premier
software engineering conferences,” J.
Syst. Softw., vol. 86, no. 4, pp. 951-969,
2013.

[8] R. Pham, S. Kiesling, O. Liskin, L.
Singer, K. Schneider, R. Pham, S.
Kiesling, O. Liskin, and K. S. De,
“Enablers , Inhibitors , and Perceptions
of Testing in Novice Software Teams
Categories and Subject Descriptors,”

Subhiyakto E. R., dkk., Software Testing Technique And Strategies Use In Novice Software Teams

(9]

[10]

Fse’l4, no. ACM, pp. 3040, 2014.

D. W. Utomo, E. R. Subhiyakto, S.
Ahmad, P. Studi, T. Informatika, F. I.
Komputer, and U. D. Nuswantoro,
“Tool Enhancement For Collaborative
Software Engineering Education,” vol.
2015, no. Sentika, pp. 9-16, 2015.

J. Lee, S. Kang, and D. Lee, “Survey on
software testing practices,” IET Softw.,
vol. 6, no. 3, p. 275, 2012.

562

[11]

[12]

J. Itkonen and C. Lassenius, “The Role
of the Tester > s Knowledge in
Exploratory Software Testing,” vol. 39,
no. 5, pp. 707-724, 2013.

S. M. Melo, S. R. S. Souza, R. A. Silva,
and C. Sp, “Concurrent Software
Testing in Practice : A Catalog of
Tools,” pp. 3140, 2015.

