GPU-Based Parallel Programming for Digital Document Image Classification

by Refi Sencia Dity,Julius Polar,Reggio N. Hartono,Maulahikmah Galinium
( Department of Information Technology Faculty of Engineering and Information Technology Swiss German University )

Date Published: 02 Dec 2013
Published In: Information Systems International Conference (ISICO)
Volume: 2013
Publisher: Departemen Sistem Informasi, Institut Teknologi Sepuluh Nopember
Language: id-ID

Keywords: Multithreading,Document Images Analysis,Document Images Classification,CUDA C,GPU,Pthreads


The use of document images is currently increasing. It creates another need to classify document images into their type automatically. To recognize the document images and classify the type, several feature extraction methods have been used in this research. Binary Morphological erosion with 9 intersection types is one of the simple and effective feature extraction method. Due to time processing, this method is not applicable. Therefore, the purpose of this research is focusing on the use of multithreading in multi-core processor with POSIX Threads (Phtreads) and multithreading GPU-based with NVIDIA CUDA in order to speed up the processing time. The results show that with local processing, the classification accuracy can be improved. Furthermore, Pthreads implemation in dual core processor can increase the processing speed around 2 scale factor. In the other hand, CUDA implementation can increase the processing speed around 100 scale factor compare with single thread program and 60 scale factor compare with multithreading in dual-core processor.

© 2024 Open Access Journal of Information Systems (OAJIS) | created by : radityo p.w ( and rully a.h (eraha99 [at]