( STMIK STIKOM INDONESIA )
Keywords: Association Rule Mining,Analisis Keranjang Belanja,Algoritma Apriori
Sering terjadinya kekosongan salah satu stok barang yang sering dibeli secara bersamaan oleh pelanggan merupakan akibat dari tidak adanya informasi mengenai kebiasaan belanja pelanggan. Sehingga perlu dilakukan penggalian informasi pada data transaksi dengan teknik association rule mining (aturan asosiasi) untuk mengetahui barang yang sering dibeli secara bersamaan oleh pelanggan. association rule mining juga sering dinamakan market basket analysis (analisis keranjang belanja). Algoritma yang digunakan dalam association rule mining pada penelitian ini adalah algoritma apriori. Kombinasi barang dicari berdasarkan nilai minimum support, nilai minimum confidence, dan rentang data transaksi penjualan yang dimasukan. Salah satu informasi yang dihasilkan adalah Jika membeli Cakra Kembar 25 Kg maka akan membeli Segitiga Biru 25 Kg dengan nilai support 11,76 % dan nilai confidence 43,24 %. Berdasarkan beberapa hasil uji coba dapat diketahui bahwa nilai minimum support yang dimasukan mempengaruhi banyak frequent itemset yang dihasilkan. Nilai minimum support dan minimum confidence yang dimasukan mempengaruhi waktu proses sistem dalam penggalian informasi.