

Explainable Artificial Intelligence (XAI)

Often referred as Interpretable Machine Learning (ML). The terms interpretable and explainable are interchangeably

AI/ML is Important for SDGs Applications: Should We Care About AI/ML Explainability?

Professor Dr. Yasuo MUSASHI, Information Security Division,

Centre for Management and Information Technologies,

Kumamoto University, Japan

- Mandated
- Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model **Behavior**
- Single
- Decision - Concepts
- Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

- **Explanation**
- Introduction
- Model explainability
- Decision explainability

The **Importance**

- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our **Journal Paper**

What Is an Explanation?

- Why did not the treatment work on the patient?
- Why was my loan or my credit card rejected?
- Why have we not been contacted by alien life yet?

 AI/ML is important for SDGs: Should we care about AI/ML explainability? YES, Because it is our right!

 YES, Right to an explanation is a right to be given an explanation for an output of the algorithm (See CFPB** and GDPR***).

** Consumer Financial Protection Bureau: https://www.consumerfinance.gov/

General Data Protection Regulation: https://academic.oup.com/idpl/article/7/4/233/4762325

- Motivations - Right to
- **Explanation**
- Mandated

Introduction

- Model explainability
- Decision explainability

The **Importance**

- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley **Values**

- SHAP

TODO: Our **Journal Paper**

The Right to Explanation is Mandated

 Under the Equal Credit Opportunity Act, creditors are required to notify applicants who are denied credit with specific reasons for the detail.

European Union

 The General Data Protection Regulation (GDPR) extends the automated decisionmaking rights in the 1995 Data Protection Directive to provide a legally disputed form of a right to an explanation, stated as such in Recital 71: "[the data subject should have the right ... to obtain an explanation of the decision reached.

Explainability in Al and ML is critical. Let's have a nice discussion

- Mandated

Introduction

- Model explainability
- Decision explainability

The **Importance**

- Not Needed
- Model **Behavior**
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

Kevnote Speaker

- Right to Explanation
- MandatedIntroduction
- Model explainability
- Decision explainability
 The

The Importance

- Not Needed
- ModelBehavior
- Single Decision
- ConceptsInterpretableModels

Model-Agnostic

- PDP
- ICE
- FeatureInteraction
- LIME
- Anchors
- ShapleyValues
- SHAP

TODO: Our Journal Paper

 Moreover, if we don't understand why they make such a prediction, can we really trust the prediction?

- For example, AI/ML prediction = today Bitcoin's price will drop!
 - Don't you feel you need to hear computer's explanation (to understand the model), before you sell you Bitcoin?
 - Don't you think you also need to understand why they decide that today Bitcoin's price will drop (to understand the decision), before you sell you Bitcoin?

- Mandated Introduction
- Model explainability
- Decision explainability

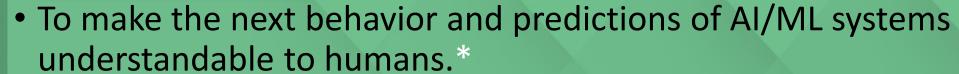
- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our **Journal Paper**

Model explainability & Decision explainability



- human can understand the cause of a decision.**
- human can consistently predict the model's result.***
- The higher the explainability or interpretability of a machine learning model, the easier it is for a human to see why specific decisions or predictions have been made.

https://christophm.github.io/interpretable-ml-book/terminology.html

Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences." arXiv Preprint arXiv:1706.07269. (28 Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. "Examples are not enough, learn to criticize! Criticism for interpretable." Processing Systems (2016)

- Right to **Explanation**
- Mandated Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models
- Model-Agnostic
- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our **Journal Paper**

The Importance of XAI

Question: If a machine learning model performs well, why do not we just trust the model and ignore why it made a certain decision?

- Right to **Explanation**
- Mandated Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley **Values**
- SHAP

TODO: Our **Journal Paper**

When We Do Not Need XAI?

 Some models may not require explanations because they are used in a low-risk environment, meaning a mistake will not have serious consequences, (e.g., a movie recommender system)

- The need for interpretability arises when for certain problems or tasks it is not enough to get only the prediction (the what).
- · The model must also explain how it came to the prediction (the
 - Example: Is there any racism in a credit approval application, discriminates against a minority?

- Right to **Explanation**
- Mandated Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model **Behavior**
- Single Decision
- Concepts Interpretable Models

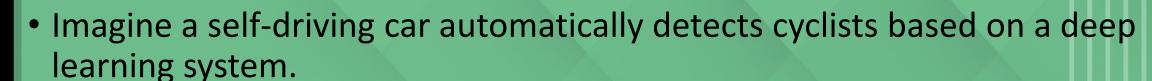
Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley **Values**
- SHAP

TODO: Our **Journal Paper**

Understand the **Model** Behavior.

Example: Detect Edge Cases for Safety Measure



 You want to be 100% sure that the abstraction the system has learned is error-free, because running over cyclists is quite bad.

 An explanation might reveal that the most important learned feature is to recognize the two wheels of a bicycle, and this explanation helps you think about edge cases like bicycles with side bags that partially cover the wheels.

- Right to **Explanation**

- Mandated
- Introduction
- Model explainability
- Decision explainability

The **Importance**

- Not Needed
- Model Behavior
- Single **Decision**
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley **Values**
- SHAP

TODO: Our **Journal Paper**

Understand Why that **Decision**, Not the Other. Example: Detect **Bias** in Al/ML Credit Approval Decision.

- This can turn your AI/ML into racists, because trained for automatic approval or rejection of credit applications discriminates against a minority that has been historically disenfranchised.
 - The goal is to grant loans only (1) to people who will eventually repay them. (granting loans in a low-risk), but also obliged (2) not to discriminate on the basis of certain demographics (compliant way).
 - These may not be covered by the loss function the AI/ML model was optimized for.

- Introduction
- Model explainability
- Decision explainability

The **Importance**

- Not Needed
- Model Behavior
- Single Decision
- Concepts

Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley **Values**
- SHAP

TODO: Our **Journal Paper**

XAI Concepts

- High transparency (white box) = Algorithms such as the least squares method for linear models are well studied and understood.
- Less transparent (black box) = Deep learning approaches are less well understood and the inner workings are the focus of ongoing research.

 Global Explanation: How does the trained model make predictions? How do parts of the model affect predictions?

Local Explanation: Why did the model make a certain sin

- Mandated Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model **Behavior**
- Single Decision
- Concepts **Interpretable Models**

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our **Journal Paper**

With some simple ML algorithm (such as Linear Regression or Logistic Regression), a trained model intuitively easy to be interpreted how it works or how it made a decision.

Notivations

Right toExplanation

- Mandated Introduction

- Model explainability
- Decision explainabilityThe

Importance

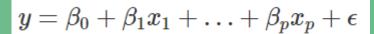
- Not Needed
- Model Behavior
- SingleDecision
- Concepts
 Interpretable
 Models

Model-Agnostic

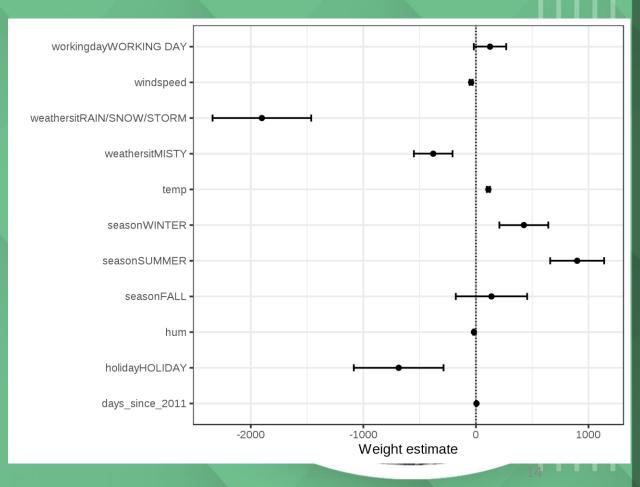
- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP TODO: Our Journal Paper

Professor Yasuo Musashi, Kumamoto University Tapan, ISICO 2022 Keynote Speaker

to predict the number of rented bikes on a particular day, given weather and calendar information.



- A linear regression model predicts the target as a weighted sum of the feature inputs.
- The linearity of the learned relationship makes the interpretation easy.
- The weight plot shows that rainy/snowy/stormy weather has a strong negative effect on the predicted number of bikes.



- Right to **Explanation**
- Mandated Introduction
- Model explainability
- Decision explainability The
- **Importance**
- Not Needed
- Model Behavior
- Single Decision
- Concepts **Interpretable**

Model-Agnostic

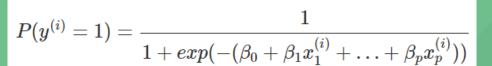
- PDP

Models

- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our **Journal Paper** Interpreting a Logistic Regression

to predict cervical cancer based on some risk factors



- An increase in the number of diagnosed STDs (sexually transmitted diseases) changes (increases) the odds of cancer vs. no cancer by a factor of 2.27, when all other features remain the same.
- For women using hormonal contraceptives, the odds for cancer vs. no cancer are by a factor of 0.89 lower, compared to women without hormonal contraceptives, given all other features stay the same.

	Weight	Odds ratio	Std. Error
Intercept	-2.91	0.05	0.32
Hormonal contraceptives y/n	-0.12	0.89	0.30
Smokes y/n	0.26	1.30	0.37
Num. of pregnancies	0.04	1.04	0.10
Num. of diagnosed STDs	0.82	2.27	0.33
Intrauterine device y/n	0.62	1.86	0.40

- Mandated

Introduction

- Model explainability
- Decision explainability

The **Importance**

- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

Model-**Agnostic**

- PDP - ICE

- Feature
- Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our **Journal Paper**

Separating the explanations from the ML model.

- Mandated
- Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model Behavior
- SingleDecision
- ConceptsInterpretableModels

Model-Agnostic

- PDP - ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

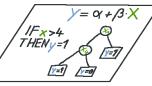
TODO: Our Journal Paper

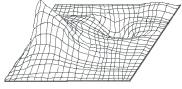
Model-Agnostic

Model flexibility

 The interpretation method can work with any machine learning model, such as random forests and deep neural networks.

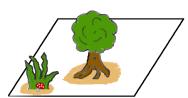
Source: https://christophm.github.io/interpretable-ml-book/





Data

World



, iotivation.

- Right to Explanation

- Mandated Introduction

- Model explainability

- Decision explainability The Importance

- Not Needed

- Model Behavior

SingleDecision

ConceptsInterpretableModels

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper Professor Yasuo Musashi, Kumamoto University

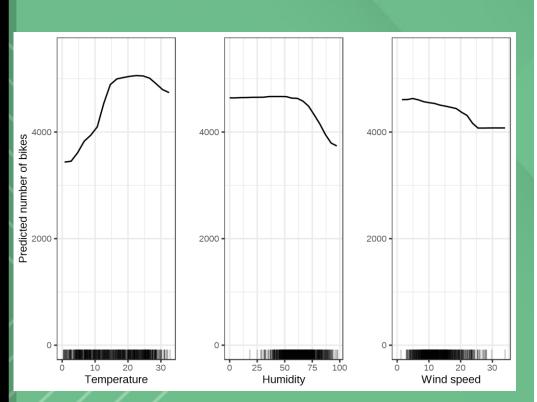
Partial Dependence Plot (PDP)

Keynote Speaker

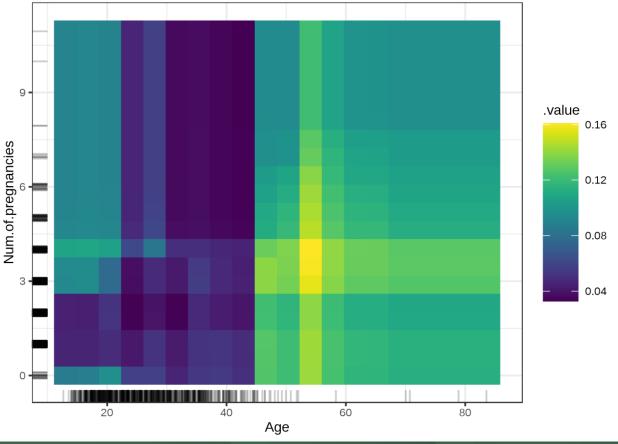
wan. ISICO 2

shows the marginal effect one or two features have on the predicted outcome of a machine learning model

The hotter, the more bikes are rented.



cancer probability increase at age 45. For ages below 25, women who had 1 or 2 pregnancies have a lower predicted cancer risk



- Right to **Explanation**
- Mandated Introduction
- Model explainability
- Decision explainability

The **Importance**

- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP

- ICE

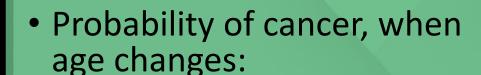
- Feature Interaction
- LIME
- Anchors
- Shapley Values

- SHAP

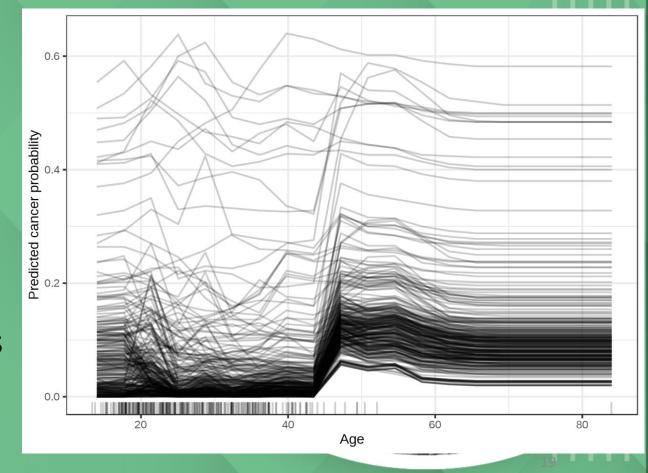
TODO: Our **Journal Paper** Keynote Speaker

Individual Conditional Expectation (ICE)

shows how the instance's prediction changes when a feature does



- For most women there is an increase in predicted cancer probability with increasing age.
- For some women with a predicted cancer probability above 0.4, the prediction does not change much at higher age.



- Right to **Explanation**
- Mandated Introduction
- Model explainability
- Decision explainability

The **Importance**

- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

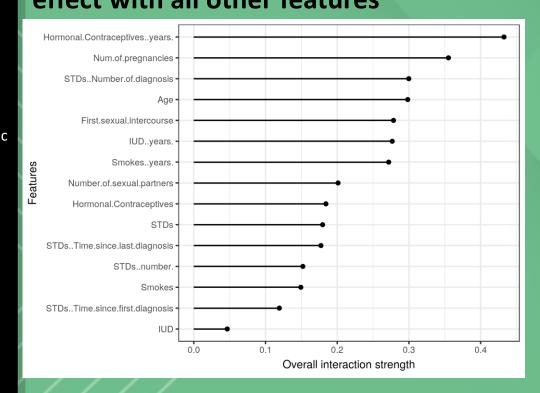
TODO: Our **Journal Paper** Professor Yasuo Musashi. Kumamoto University

wan. ISICO 2 Keynote Speaker

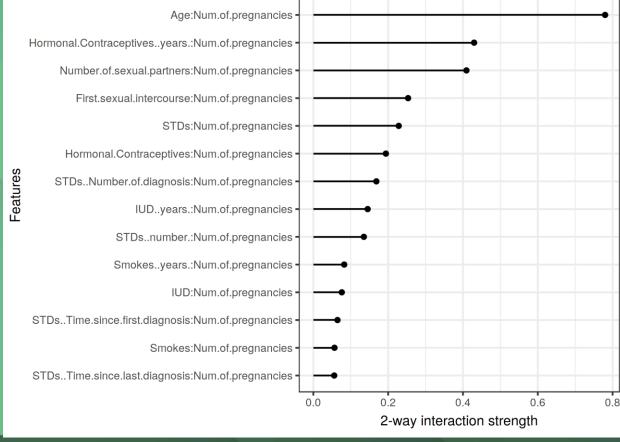
Feature Interaction

When features interact with each other, the effect of one feature depends on the value of the other feature





There is a strong interaction between the number of pregnancies and the age



- Right to **Explanation**
- Mandated Introduction
- Model explainability
- Decision explainability The
- **Importance**
- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

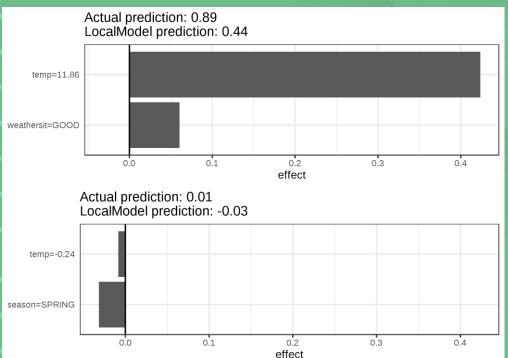
Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our **Journal Paper**

explanations (LIME) used to explain individual

predictions of black box machine learning models.



Left: Image of a bowl of bread. Middle and right: LIME explanations for the top 2 classes (bagel, strawberry) for image classification

Kevnote Speaker

- Right to **Explanation**
- Mandated Introduction
- Model explainability
- Decision explainability The

Importance

- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our **Journal Paper**



Scoped Rules (Anchors) explains

Keynote Speaker

pan, ISICO 2

individual predictions of any black-box classification model by finding a decision rule that "anchors" the prediction sufficiently.

Whether or not a passenger survives	
the Titanic disaster. One exemplary	
individual and the model's prediction)
the Titanic disaster. One exemplary	

Feature	Value
Age	20
Sex	female
Class	first
TicketPrice	300\$
More attributes	
Survived	true

And the corresponding anchors explanation is:

IF SEX = female AND Class = first THEN PREDICT Survived = true WITH PRECISION 97% AND COVERAGE 15%

- Right to **Explanation**
- Introduction
- Model explainability
- Decision explainability
- The **Importance**
- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

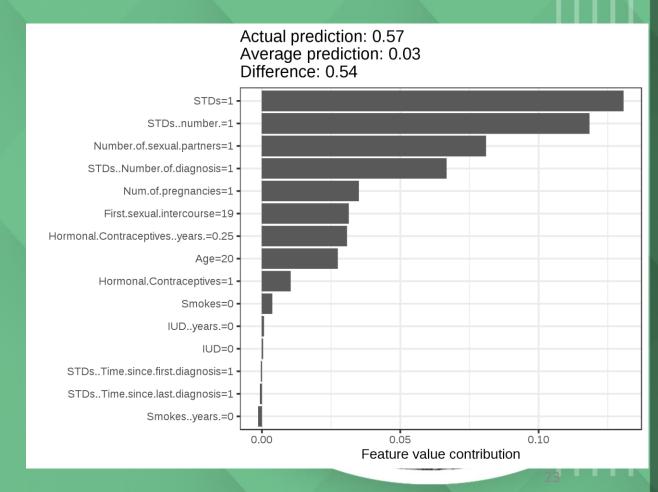
Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley **Values**
- SHAP TODO: Our **Journal Paper**

- Mandated

-- a method from coalitional game theory -- tells us how to fairly distribute the "payout" among the features.

- With a prediction of 0.57, this woman's cancer probability is 0.54 above the average prediction of 0.03.
- The number of diagnosed STDs increased the probability the most.
- The sum of contributions yields the difference between actual and average prediction (0.54).



- Right to Explanation
- Mandated Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model Behavior
- Single Decision
- ConceptsInterpretableModels

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

explain individual predictions based on the game theoretically optimal Shapley Values.

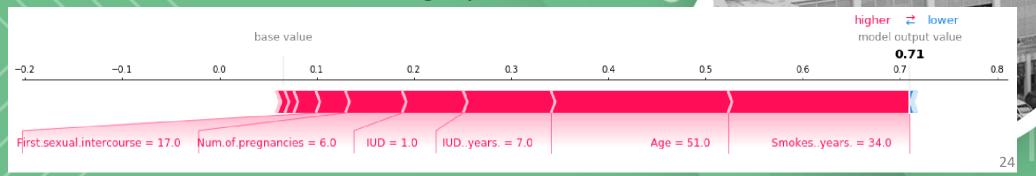
pan, ISICO 2

Keynote Speaker

age.

• The first woman has a low predicted risk of 0.06.

The second woman has a high predicted risk of 0.71



eaker Motivations - Right to Explanation - Mandated Introduction - Model explainability - Decision explainability The Importance - Not Needed - Model **Behavior** - Single Decision - Concepts Interpretable Models Model-Agnostic - PDP - ICE - Feature Interaction - LIME - Anchors - Shapley Values - SHAP **TODO: Our Journal Paper**

Explanation

- Mandated Introduction

- Model explainability
- Decision explainability

The Importance

- Not Needed
- Model Behavior
- Single Decision
- ConceptsInterpretableModels

Model-Agnostic

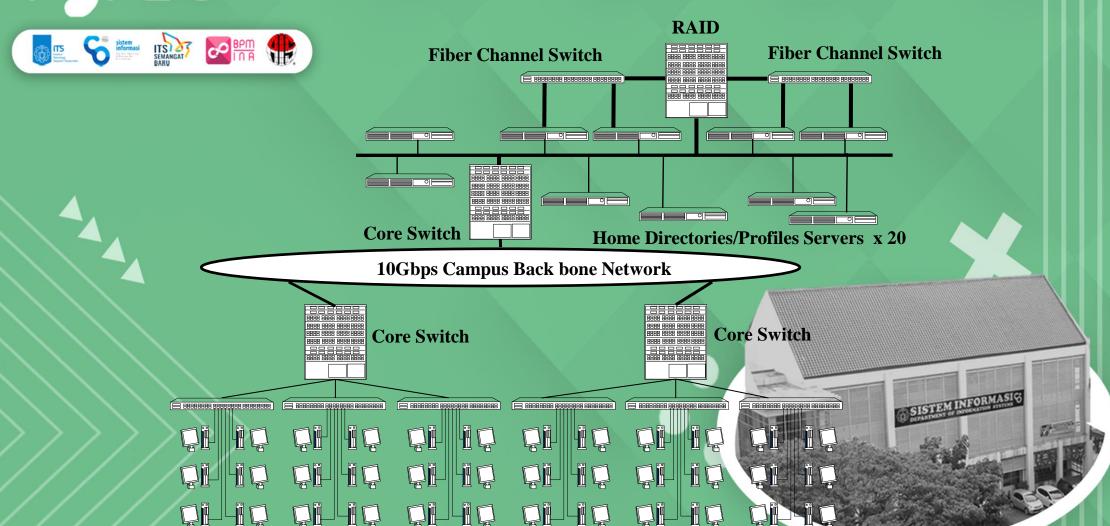
- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

A Campus Network Systems

Keynote Speaker

pan, ISICO 2



Introduction

- Model explainability
- Decision explainability

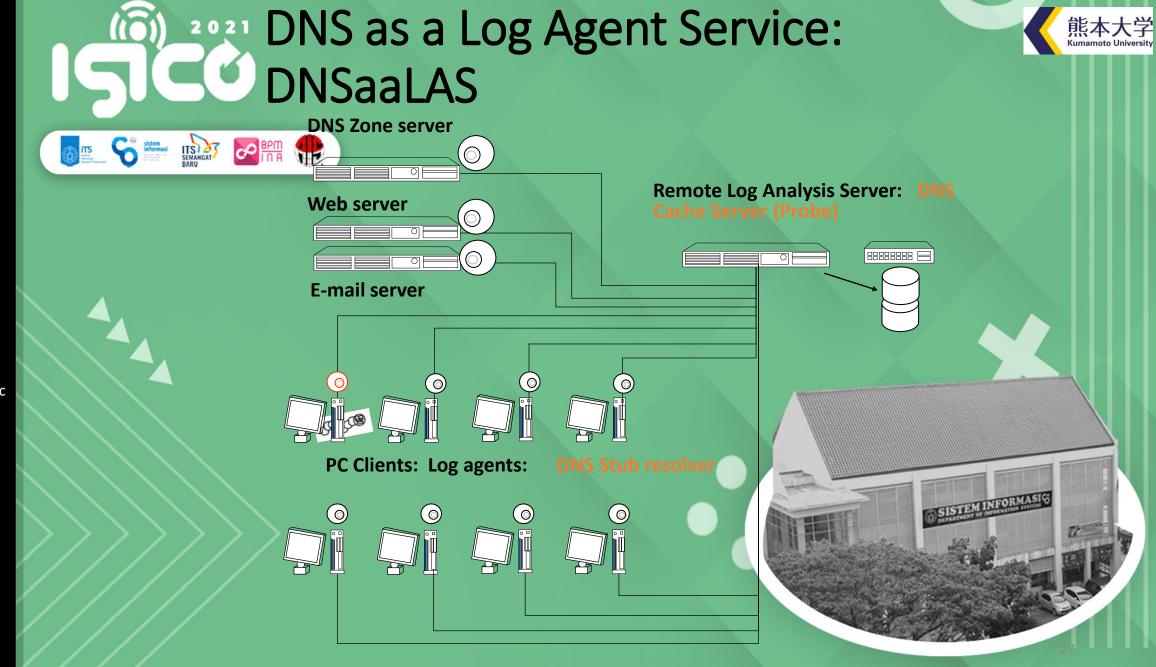
The **Importance**

- Not Needed
- Model **Behavior**
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper



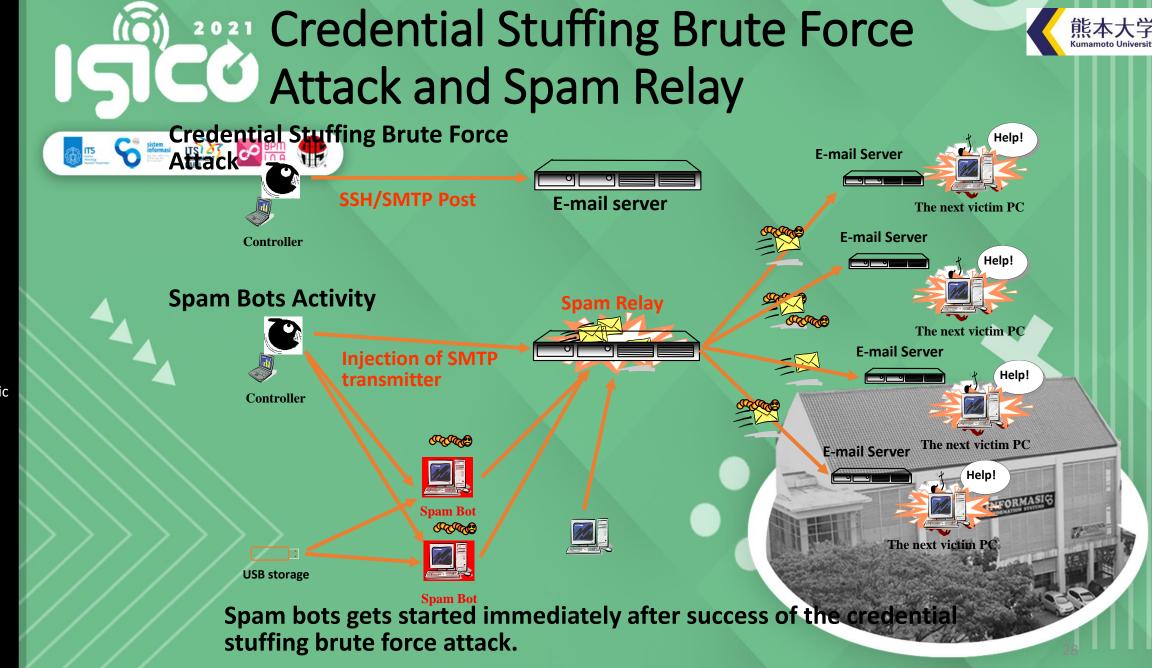
Right toExplanationMandated

- Introduction
- Model explainability
- Decision explainabilityThe
- Importance Not Needed
- Model Behavior
- Single Decision
- ConceptsInterpretableModels

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper



- Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

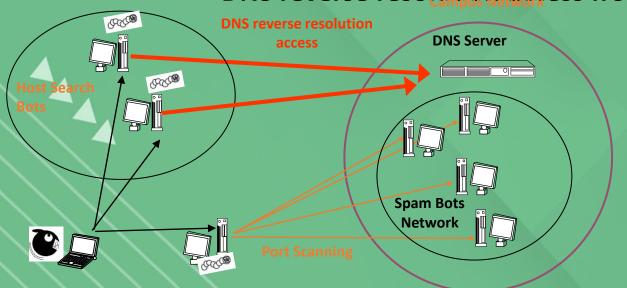
Model-Agnostic

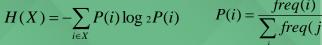
- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

Host Search: FQDN harvesting

• DNS reverse resolution access from the Internet sites





H(X) $X \in \{q, \text{outside}\}\$



Oct 12 08:38:24 kun named[533]: client 133.95.xxx.yyy#39815: query 130.13.194.xxx.in-addr.arpa IN PTR

Oct 12 08:38:25 kun named[533]: client 133.95.xxx.yyy#39825: query: dmea.net IN MX

Oct 12 08:38:43 kun named[533]: client 133.95.xxx.yyy#40010: query: mxwall03.hkabc.net IN A

- Right to **Explanation**

- Mandated Introduction
- Model explainability
- Decision explainability

The **Importance**

- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

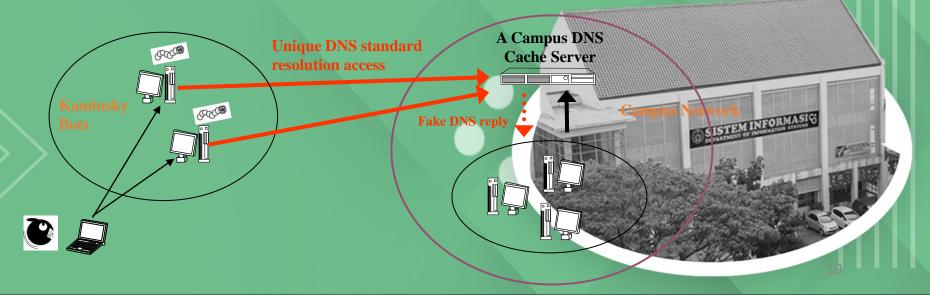
Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

Kaminsky DNS Cache Poisoning Attack Model: DDoS

- To generate many recursive DNS query requests to upper sites
- In other word, to generate many DNS replies from the upper sites
- To raise the probability in the DNS cache poisoning attack



- Mandated Introduction
- Model explainabi<u>lity</u>
- Decision explainability

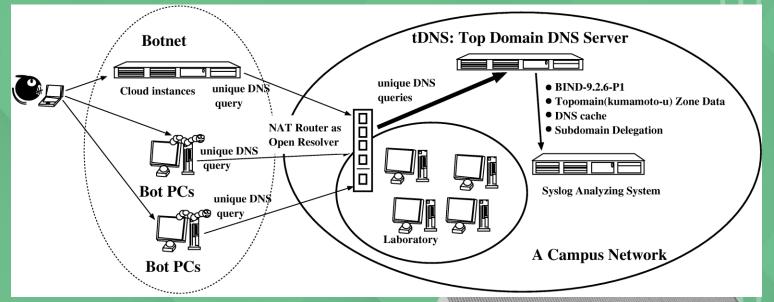
- Not Needed
- Model Behavior
- Single Decision
- ConceptsInterpretableModels

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

DDoS Attack: Open DNS Resolver



- A Component for Reflection DDoS (Distributed Denial of Service) attack
 - 100Gbps in Sprint Networks
- Kanminsky type DNS cache poisoning attack but no DNS reply packets
- Water Torture: A Slow Drip DNS DDoS Attack https://blog.secure64.com/?p=377

Right to Explanation

- Mandated Introduction

- Model explainability

- Decision explainability

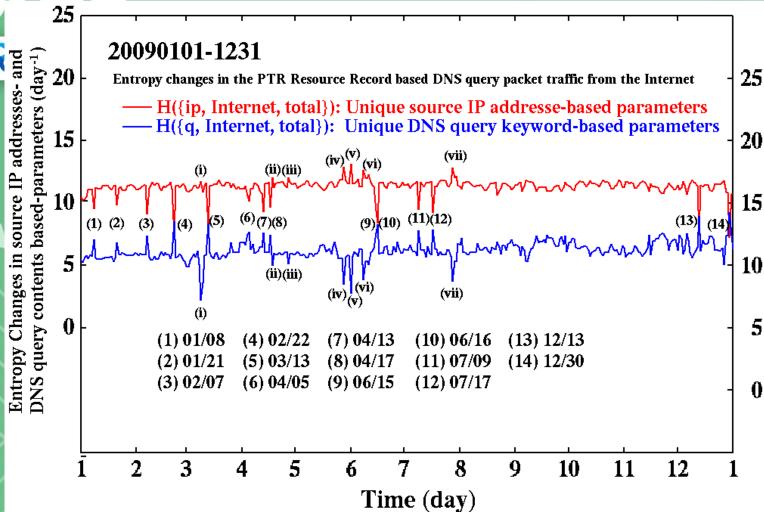
The Importance

- Not Needed
- Model Behavior
- SingleDecision
- ConceptsInterpretableModels

Model-Agnostic

- PDP
- ICE
- FeatureInteraction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper



H(X) $X \in \text{(ip, outside)}$ H(X) $X \in \text{(a, outside)}$ $\{ (1) - (14) \}$

H(X) $X \in \{ip, \text{ outside}\}$ H(X) $\{(i)-(vii)\}$

Totally, 18 significant peaks can be observed, consisting of 14 and 8 peaks for HS and RA activities, but no TA activity can be shown.

- Mandated Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model Behavior
- Single Decision
- Concepts Interpretable Models

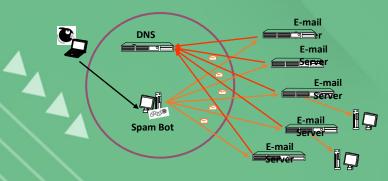
Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

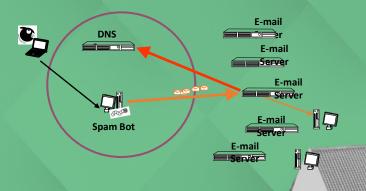
TODO: Our Journal Paper

Random Attack and Target Attack

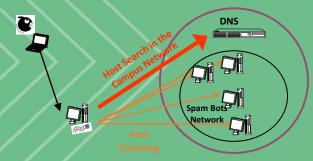
Random Spam Bots (RSB)



Targeted Spam Bots (TSB)



Host Search Attack



D. A. Ludeña Romaña, S. Kubota, K. Sugitani, and Y. Musashi, IPSJ SIG Technical Reports, the 1st Internet and Operational Technologies (IOT01), Vol. 2008, No.37, pp.103-108 (2008).

- Explanation - Mandated
- Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model **Behavior**
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

- Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model **Behavior**
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

- Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model **Behavior**
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

- Right to Explanation
- Mandated Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model **Behavior**
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

- Mandated Introduction

- Model explainability
- Decision explainability

The **Importance**

- Not Needed
- Model **Behavior**
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

- Right to Explanation
- Mandated Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model **Behavior**
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

- Right to Explanation
- Mandated Introduction
- Model explainability
- Decision explainability

- Not Needed
- Model **Behavior**
- Single Decision
- Concepts Interpretable Models

Model-Agnostic

- PDP
- ICE
- Feature Interaction
- LIME
- Anchors
- Shapley Values
- SHAP

TODO: Our Journal Paper

